Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2018

# **Supporting Information**

## **Organic Dye-Catalyzed Radical Ring Expansion Reaction**

Masato Deguchi, Akitoshi Fujiya, Eiji Yamaguchi, Norihiro Tada, Bunji Uno and Akichika Itoh\*

Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan

E-mail: <u>itoha@gifu-pu.ac.jp</u>

**Table of Contents** 

| 1. | General Information                                                           | S-1  |
|----|-------------------------------------------------------------------------------|------|
| 2. | The wave length and spectral irradiance of fluorescent lamp (ERF25ED/22-SP-F) | S-1  |
| 3. | Time course of 1a and 2a                                                      | S-1  |
| 4. | General Procedure                                                             | S-2  |
| 5. | Computational details                                                         | S-7  |
| 6. | References                                                                    | S-13 |
| 7. | <sup>1</sup> H and <sup>13</sup> C spectra                                    | S-14 |

### **1. General Information**

Unless otherwise noted, all reactants or reagents including dry solvents were obtained from commercial suppliers and used as received. Flash column chromatography was performed with Kanto silica gel 60N (Spherical, Neutral, 40–50 mm). Analytical thin-layer chromatography (TLC) was carried out using 0.25 mm commercial silica gel plates (Merck silica gel 60 F<sub>254</sub>). The developed chromatogram was analyzed by UV lamp (254 nm). <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra were obtained on a JEOL ECA 500 (500 MHz for <sup>1</sup>H NMR and 125 MHz for <sup>13</sup>C NMR). Chemical shifts (δ) are expressed in parts per million and are internally referenced [0.00 ppm (tetramethylsilane) for <sup>1</sup>H NMR and 77.0 ppm (CDCl<sub>3</sub>) for <sup>13</sup>C NMR. Infrared spectra were taken on a Perkin Elmer Spectrum 100 FTIR and are reported in reciprocal centimeters (cm<sup>-1</sup>). High-resolution mass spectra (HRMS) were obtained on a JEOL JMS-T100TD is reported as m/z (relative intensity). Melting points were measured on a Yanaco Micro Melting Point Apparatus and are uncorrected.

### 2. The wavelength and spectral irradiance of fluorescent lamp (EFR25ED/22-SPF)



#### 3. Time course of 1a and 2a



General Procedure for Ring Expansion. Methyl 3-oxocycloheptane-1-carboxylate (2a) (Table 1): A mixture of methyl 1-(iodomethyl)-2-oxocyclohexane-1-carboxylate<sup>S1</sup> (1a, 0.15 mmol), erythrosine B (5 mol%),  ${}^{i}Pr_2NEt$  (0.75 mmol, 5 equiv.), in DMSO (5 mL) as stirred under N<sub>2</sub> with irradiation of 22 W × 4 fluorescent lamps (EFR25ED/22-SP F from Panasonic) for 20 h. The reaction mixture was diluted with EtOAc (30 mL) and washed with brine (5 mL × 3), dried over magnesium sulfate, filtered and concentrated *in vacuo*. Purification of the residue by flash column chromatography (hexane : ethyl acetate = 4 : 1) on silica gel provided desired material. Other products were also provided in the same way in which the eluent of flash column chromatography depend on products.

### Methyl 3-oxocycloheptane-1-carboxylate<sup>S1</sup> (2a)

The product was isolated as a light brown oil.

**TLC**:  $R_f = 0.27$  (hexane : ethyl acetate = 4 : 1).

<sup>1</sup><u>H NMR (500 MHz, CDCl<sub>3</sub>)</u>: δ 3.70 (s, 3H), 2.84–2.67 (m, 3H), 2.58–2.45 (m, 2H), 2.15–2.05 (m, 1H), 1.96–1.53 (m, 5H). <sup>13</sup><u>C NMR (125 MHz, CDCl<sub>3</sub>)</u>: δ 212.1, 175.0, 52.0, 45.5, 43.9, 41.1, 33.2, 28.2, 23.9.

OMe

OMe

### Methyl 3-oxocyclooctane-1-carboxylate<sup>S1</sup> (2b)

The product was isolated as a light brown oil.

**TLC**:  $R_f = 0.34$  (hexane : ethyl acetate = 4 : 1).

<u><sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)</u>: δ 3.70 (s, 3H), 2.96–2.91 (m, 1H), 2.80 (t, *J* = 12.6 Hz, 1H), 2.58–2.38 (m, 3 H), 2.03–1.37 (m, 8H).

<sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>): δ 214.8, 175.0, 52.0, 42.9 (2C), 42.7, 29.7, 27.2, 24.7, 23.3 (the peak of 42.9 seems to be overlapped).

### Methyl 3-oxocyclononane-1-carboxylate<sup>S1</sup> (2c)

The product was isolated as a light brown oil. **TLC**:  $R_f = 0.34$  (hexane : ethyl acetate = 7 : 1).

<u><sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)</u>: δ 3.70 (s, 3H), 3.05–2.99 (m, 1H), 2.87–2.82 (m, 1H), 2.65–2.62 (m, 1H), 2.54–2.43 (m, 2H), 1.93–1.20 (m, 10H).

<sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>): δ 215.1, 175.8, 52.0, 44.3, 43.8, 41.3, 29.7, 25.6, 25.5, 24.1, 22.9.

### Methyl 3-oxocyclohexane-1-carboxylate <sup>S2</sup> (2d)

The product was isolated as a light brown oil.

**<u>TLC</u>**:  $R_f = 0.29$  (hexane : ethyl acetate = 4 : 1).

<u><sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)</u>: δ 3.71 (s, 3H), 2.85–2.79 (m, 1H), 2.56 (d, *J* = 8.6 Hz, 2H), 2.42–2.30 (m, 2H), 2.16–2.04 (m, 2H), 1.89–1.69 (m, 2H).

<sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>): δ 209.3, 174.2, 52.1, 43.10, 43.07, 40.9, 27.7, 24.5.

**Benzyl 3-oxocycloheptane-1-carboxylate (2e)** The product was isolated as a light brown oil.

**<u>TLC</u>**:  $R_f = 0.36$  (hexane : ethyl acetate = 4 : 1).

<u><sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)</u>: δ 7.39–7.32 (m, 5H), 5.13 (s, 2H), 2.85–2.69 (m, 3H), 2.55–2.44 (m, 2H), 2.15–2.10 (m, 1H), 1.94–1.76 (m, 3H), 1.69–1.61 (m, 1H), 1.56–1.49 (m, 1H).





<sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>): δ 212.3, 174.4, 135.8, 128.7, 128.5, 128.4, 66.8, 45.6, 44.0, 41.4, 33.3, 28.4, 24.0.

IR v/cm<sup>-1</sup> (ATR): 2929, 1731, 1700, 1456, 1276, 1155, 1011, 751, 698.

**HRMS (DART)**: Found 247.1344, Calcd. for  $C_{15}H_{19}O_3$ ,  $[M + H]^+$ : 247.1329.

Methyl 6,7,8,9-tetrahydro-5-oxo-5H-benzocycloheptene-7-carboxylate (2f)

The product was isolated as a colorless oil.

**<u>TLC</u>**:  $R_f = 0.42$  (hexane : ethyl acetate = 3 : 1).

<sup>1</sup>**H NMR (500 MHz, CDCl<sub>3</sub>)**:  $\delta$  7.73 (d, J = 6.9 Hz, 1H), 7.44 (t, J = 7.5 Hz, 1H), 7.32 (t, J = 7.5 Hz, 1H), 7.22 (d, J = 7.5Hz, 1H), 3.65 (s, 3H), 3.10–2.85 (m, 5H), 2.32–2.25 (m, 1H), 2.18–2.10 (m, 1H).

<sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>): δ 203.0, 175.0, 141.0, 138.4, 132.8, 130.0, 129.0, 127.3, 52.4, 43.0, 38.4, 31.3, 28.8.

IR v/cm<sup>-1</sup> (ATR): 2952, 1731, 1676, 1599, 1449, 1435, 1294, 1254, 1198, 1171, 1092, 1065, 1028, 956, 922, 888, 830, 771.

**HRMS (DART)**: Found 219.1018, Calcd. for C<sub>13</sub>H<sub>15</sub>O<sub>3</sub> [M + H]<sup>+</sup> : 219.1016.

### Methyl 4-hydroxy-2-naphthoate<sup>S3</sup> (3g)

The product was isolated as a light brown solid.

**TLC**:  $R_f = 0.38$  (hexane : ethyl acetate = 3 : 1).

1H NMR (500 MHz, CDCl<sub>3</sub>): δ 8.26 (d, *J* = 8.0 Hz, 1H), 8.21 (s, 1H), 7.92 (d, *J* = 8.0 Hz, 1H), 7.63–7.54 (m, 3H), 6.44 (s, 1H), 4.00 (s, 3H).

<sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>): δ 167.6, 152.0, 133.8, 129.1, 127.6, 127.3, 127.2, 126.9, 123.6, 122.0, 107.5, 52.4.

Methyl 7a-hydroxy-octahydro-1H-indene-3a-carboxylate (3i)

The product was isolated as a colorless oil.

**TLC**:  $R_f = 0.59$  (hexane : ethyl acetate = 3 : 1).

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>): δ 3.77 (s, 1H), 3.72 (s, 3H), 2.27–2.20 (m, 1H), 2.04–1.95 (m, 2H), 1.92–1.82 (m, 2H), 1.80– 1.71 (m, 3H), 1.68–1.65 (m, 1H), 1.62–1.51 (m, 2H), 1.42–1.33 (m, 2H), 1.20–1.12 (m, 1H).

<sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>): δ 178.1, 81.4, 56.1, 51.8, 34.5, 34.2, 34.1, 33.2, 23.8, 22.8, 19.0.

**IR** *v*/**cm**<sup>-1</sup> (**ATR**): 2936, 2862, 1710, 1453, 1326, 1293, 1233, 1194, 1164, 1142, 1084, 1046, 1026, 985, 888, 851.

**HRMS (DART)**: Found 199.1324, Calcd. for  $C_{11}H_{19}O_3 [M + H]^+$ : 199.1329.

### Methyl 2-methyl-4-oxopentanoate<sup>S1</sup> (2j)

The product was isolated as a colorless oil.

**TLC**:  $R_f = 0.27$  (hexane : ethyl acetate = 3 : 1).

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>): δ 3.68 (s, 3H), 2.99–2.89 (m, 2H), 2.51–2.45 (m, 1H), 2.16 (s, 3H), 1.19 (d, *J* = 6.9 Hz, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>): δ 206.7, 176.3, 51.9, 46.6, 34.6, 30.0, 17.1.

Ethyl 2-methyl-4-oxo-4-phenylbutanoate<sup>S4</sup> (2k)

The product was isolated as a light brown oil.

**TLC**:  $R_f = 0.27$  (hexane : ethyl acetate = 3 : 1).

<u>**H NMR (500 MHz, CDCl**<sub>3</sub>)</u>: δ 7.99–7.96 (m, 2H), 7.59–7.55 (m, 1H), 7.47 (m, 2H), 4.15 (q, *J* = 6.9 Hz, 2H), 3.49 (dd, *J* = 17.8, 8.0 Hz, 1H), 3.16–3.08 (m, 1H), 3.02 (dd, *J* = 17.8, 5.7 Hz, 1H), 1.29 (d, *J* = 6.9 Hz, 3H), 1.26 (t, *J* = 6.9 Hz, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>): δ 198.3, 176.2, 136.9, 133.4, 128.8, 128.2, 60.8, 42.1, 35.2, 17.5, 14.3.





.OMe





Methyl 1-[[(2,2,6,6-tetramethyl-1-piperidinyl)oxy]methyl]-2-oxocyclopentanoate

The product was isolated as a colorless oil.

**<u>TLC</u>**:  $R_f = 0.39$  (hexane : ethyl acetate = 9 : 1).

 $\frac{1 \text{H NMR (500 MHz, CDCl_3)}}{(m, 1H), 2.42-2.35 (m, 2H), 2.06-1.98 (m, 1H), 1.84-1.75 (m, 2H), 1.71-1.59 (m, 2H), 1.55-1.35 (m, 5H), 1.33-1.25 (m, 1H), 1.15-1.00 (m, 12H).$ 

<sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>): δ 206.2, 170.5, 77.6, 61.3, 60.0, 52.3, 41.1, 39.7, 34.3, 32.8, 32.6, 27.4, 22.1, 20.1, 20.0, 16.9.

OMe

<u>**IR** *v*/cm<sup>-1</sup> (**ATR**)</u>: 2931, 1714, 1452, 1375, 1360, 1266, 1200, 1147, 1133, 1103, 1083, 1046, 960, 847, 808, 713. <u>**HRMS (DART)**</u>: Found 326.2345, Calcd. for  $C_{18}H_{32}O_4N [M + H]^+$ : 326.2326.

#### Syntheses of substrates

Methyl 1-iodemethyl-2-oxocyclopentanoate (1d)



A solution of 1.42 g (10.0 mmols) of methyl 2-oxocyclopentanoate<sup>S5</sup> in 8 mL of dry THF was added slowly to a suspension of 0.48 g (12.0 mmols, 60% dispersion in mineral oil, washed with hexane 50 mL, two times) of NaH in 12 mL of dry THF containing 2.15 g (12.0 mmols) of hexamethylphosphoramide (HMPA) at room temperature under argon. The reaction mixture was stirred at room temperature for 1 h, then treated with 13.4 g (50.0 mmols) of diiodomethane. The reaction mixture was refluxed at 80 °C for 10 h, then washed with water (100 mL), extracted with Et<sub>2</sub>O (100 mL × 3), dried over K<sub>2</sub>CO<sub>3</sub>, filtered and concentrated *in vacuo*. Purification of the residue by flash column chromatography (hexane : ethyl acetate = 9 : 1) on silica gel provided 0.90 g (32% yield) of **1d** as a colorless oil.

**<u>TLC</u>**:  $R_f = 0.35$  (hexane : ethyl acetate = 9 : 1).

<u><sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)</u>: δ 3.76 (s, 3H), 3.62 (d, *J* = 10.3 Hz, 1H), 3.36 (d, *J* = 10.3 Hz, 1H), 2.70–2.60 (m, 1H), 2.53–2.45 (m, 1H), 2.43–2.34 (m, 1H), 2.16–1.97 (m, 3H).

<sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>): δ 211.0, 168.8, 61.0, 53.1, 38.1, 34.6, 19.1, 7.0.

**IR** *v*/**cm**<sup>-1</sup> (**ATR**): 2955, 1753, 1726, 1435, 1277, 1205, 1168, 1123, 968, 919, 826.

**<u>HRMS</u>** (DART): Found 282.9831, Calcd. for  $C_8H_{12}IO_3 [M + H]^+$ : 282.9826.

#### Benzyl 1-iodemethyl-2-oxocyclohexanecarboxylate (1e)



A solution of 2.32 g (10.0 mmols) of benzyl 2-oxocyclohexanecarboxylate<sup>S6</sup> in 8 mL of dry THF was added slowly to a suspension of 0.48 g (12.0 mmols, 60% dispersion in mineral oil, washed with hexane 50 mL, two times) of NaH in 12 mL of dry THF containing 2.15 g (12.0 mmols) of hexamethylphosphoramide (HMPA) at room temperature under argon. The reaction mixture was stirred at room temperature for 1 h, then treated with 13.4 g (50.0 mmols) of diiodomethane. The reaction mixture was refluxed at 80 °C for 10 h, then washed with water (100 mL), extracted with Et<sub>2</sub>O (100 mL × 3), dried over K<sub>2</sub>CO<sub>3</sub>, filtered and concentrated *in vacuo*. Purification of the residue by flash column chromatography (CHCl<sub>3</sub>) on silica gel provided 1.19 g (32% yield) of **1e** as a colorless oil.

### <u>**TLC</u>**: $R_f = 0.28$ (CHCl<sub>3</sub>).</u>

<sup>1</sup><u>H NMR (500 MHz, CDCl<sub>3</sub>)</u>:  $\delta$  7.40–7.33 (m, 5H), 5.24–5.18 (m, 2H), 3.64 (d, *J* = 10.3 Hz, 1H), 3.36 (d, *J* = 10.3 Hz, 1H), 2.70–2.65 (m, 1H), 2.46–2.33 (m, 2H), 2.03–1.95 (m, 1H), 1.88–1.75 (m, 2H), 1.71–1.55 (m, 2H). <sup>13</sup><u>C NMR (125 MHz, CDCl<sub>3</sub>)</u>:  $\delta$  205.0, 168.8, 135.0, 128.7, 128.6, 128.5, 67.7, 60.9, 40.8, 37.3, 27.4, 22.2, 8.4. <u>IR *v*/cm<sup>-1</sup> (ATR)</u>: 2945, 1710, 1455, 1263, 1212, 1155, 1101, 975, 750, 697. <u>HRMS (DART)</u>: Found 373.0301, Calcd. for C<sub>15</sub>H<sub>18</sub>IO<sub>3</sub> [M + H]<sup>+</sup>: 373.0295.

#### Methyl 2,3-dihydro-2-(iodomethyl)-1-oxo-1H-indene-2-carboxylate (1g)



A solution of 1.90 g (10.0 mmols) of methyl 2,3-dihydro-1-oxo-1*H*-indene-2-carboxylate<sup>S7</sup> in 8 mL of dry THF was added slowly to a suspension of 0.48 g (12.0 mmols, 60% dispersion in mineral oil, washed with hexane 50 mL, two times) of NaH in 12 mL of dry THF containing 2.15 g (12.0 mmols) of hexamethylphosphoramide (HMPA) at room temperature under argon. The reaction mixture was stirred at room temperature for 1 h, then treated with 14.8 g (50.0 mmols) of diiodomethane. The reaction mixture was refluxed at 80 °C for 10 h, then washed with water (100 mL), extracted with Et<sub>2</sub>O (100 mL × 3), dried over K<sub>2</sub>CO<sub>3</sub>, filtered and concentrated *in vacuo*. Purification of the residue by flash column chromatography (hexane : ethyl acetate = 5 : 1) on silica gel provided 2.05 g (62% yield) of **1g** as a light brown solid.

**<u>TLC</u>**:  $R_f = 0.35$  (hexane : ethyl acetate = 5 : 1).

#### <u>**m.p.**</u>: 64–65 °C.

<u><sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)</u>: δ 7.78 (d, *J* = 8.0 Hz, 1H), 7.67 (t, *J* = 7.5 Hz, 1H), 7.53 (d, *J* = 7.5 Hz, 1H), 7.42 (t, *J* = 7.5 Hz, 1H), 3.84–3.78 (m, 2H), 3.73 (s, 3H), 3.55 (d, *J* = 9.7 Hz, 1H), 3.28 (d, *J* = 17.8 Hz, 1H).

<sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>): δ 199.1, 169.1, 153.0, 136.2, 134.7, 128.3, 126.7, 125.5, 61.4, 53.5, 39.2, 7.7.

**IR** *v*/**cm**<sup>-1</sup> (**ATR**): 2953, 1736, 1710, 1607, 1589, 1465, 1435, 1253, 1209, 1172, 1043, 1004, 954, 921, 891, 865, 824, 801, 752, 693.

HRMS (DART): Found 330.9834, Calcd. for C<sub>12</sub>H<sub>12</sub>O<sub>3</sub>I, [M + H]<sup>+</sup>: 330.9826.

#### Methyl 1-bromomethyl-2-oxocyclohexane-1-carboxylate (1h)



A solution of 1.56 g (10.0 mmols) of methyl 2-oxocyclohexanoate<sup>S5</sup> in 8 mL of dry THF was added slowly to a suspension of 0.48 g (12.0 mmols, 60 % dispersion in mineral oil, washed with hexane 50 mL, two times) of NaH in 12 mL of dry THF containing 2.15 g (12.0 mmols) of hexamethylphosphoramide (HMPA) at room temperature under argon. The reaction mixture was stirred at room temperature for 1 h, then treated with 13.4 g (50.0 mmols) of dibromomethane. The reaction mixture was refluxed at 80 °C for 10 h, then washed with water (100 mL), extracted with Et<sub>2</sub>O (100 mL  $\times$  3), dried over K<sub>2</sub>CO<sub>3</sub>, filtered and concentrated *in vacuo*. Purification of the residue by flash column chromatography (hexane : ethyl acetate = 9 : 1) on silica gel provided 1.06 g (45% yield) of **1h** as a colorless oil.

**<u>TLC</u>**:  $R_f = 0.28$  (hexane : ethyl acetate = 9 : 1).

<sup>1</sup><u>H NMR (500 MHz, CDCl<sub>3</sub>)</u>: δ 3.85 (d, *J* = 10.3 Hz, 1H), 3.78 (s, 3H), 3.52 (d, *J* = 10.3 Hz, 1H), 2.75−2.69 (m, 1H), 2.51−2.40 (m, 2H), 2.10−2.01 (m, 1H), 1.91−1.78 (m, 2H), 1.74−1.55 (m, 2H).

<sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>): δ 205.5, 169.5, 61.5, 52.9, 40.9, 35.4, 35.3, 27.3, 22.2.
<u>IR v/cm<sup>-1</sup> (ATR)</u>: 2952, 1711, 1437, 1267, 1196, 1174, 1126, 1108, 1059, 996, 817.
<u>HRMS (DART)</u>: Found 249.0130, Calcd. for C<sub>9</sub>H<sub>14</sub>O<sub>3</sub>Br, [M + H]<sup>+</sup>: 249.0121.

#### Methyl 1-(3-iodopropyl)-2-oxocyclohexanoate (1i)



A solution of 0.31 g (2.0 mmols) of methyl 2-oxocyclohexanoate<sup>S5</sup> in 6 mL of dry THF was added slowly to a suspension of 96.0 mg (2.4 mmols, 60% dispersion in mineral oil, washed with hexane 10 mL, two times) of NaH in 9 mL of dry THF containing 430 mg (2.4 mmols) of hexamethylphosphoramide (HMPA) at room temperature under argon. The reaction mixture was stirred at room temperature for 1 h, then treated with 2.96 g (10.0 mmols) of 1,3-diiodopropane<sup>S8</sup>. The reaction mixture was refluxed at 80 °C for 20 h, then washed with water (50 mL), extracted with Et<sub>2</sub>O (50 mL × 3), dried over K<sub>2</sub>CO<sub>3</sub>, filtered and concentrated *in vacuo*. Purification of the residue by flash column chromatography (hexane : ethyl acetate = 7 : 1) on silica gel provided 317.7 mg (49%) of **1i** as a colorless oil.

**<u>TLC</u>**:  $R_f = 0.40$  (hexane : ethyl acetate = 7 : 1).

<sup>1</sup><u>H NMR (500 MHz, CDCl<sub>3</sub>)</u>: δ 3.75 (s, 3H), 3.21–3.11 (m, 2H), 2.52–2.42 (m, 3H), 2.05–1.64 (m, 8H), 1.50–1.44 (m, 1H). <sup>13</sup><u>C NMR (125 MHz, CDCl<sub>3</sub>)</u>: δ 207.6, 172.3, 60.3, 52.4, 41.0, 36.2, 35.7, 28.6, 27.5, 22.5, 6.3.

<u>IR v/cm<sup>-1</sup> (ATR)</u>: 2946, 1712, 1449, 1209, 1164.

HRMS (DART): Found 325.0311, Calcd. for C<sub>11</sub>H<sub>18</sub>O<sub>3</sub>I, [M + H]<sup>+</sup>: 325.0295.

### 5. Computational details

Quantum chemical calculation were performed at the DFT levels as implemented in the Gaussian 09 program.<sup>S9</sup> The M06-2X functional<sup>S10</sup> combined with the 6-31G (d) basis set for hydrogen, carbon, nitrogen, oxygen, sulfur, and MIDI! basis set for iodine were adopted in the present calculations. The full-electron basis MIDI! was selected for iodine since it is superior to commonly used pseudopotential basis LANL2DZ and SDDALL in reproducing experimental bond length of iodine–iodine and carbon–iodine bonds. Numerical integrations were done using ultrafine grid. Geometry optimization and frequency analysis were performed in the solution environment (solvent = DMSO,  $\varepsilon$  = 46.826) simulated by the integral equation formalism variant of polarizable continuum model (IEF-PCM).<sup>S11</sup> The obtained equilibrium and transition-state structures have been confirmed to be characterized by all positive vibrational frequencies and one imaginary vibrational mode, respectively. The adequacy of the transition states can be distinctly identified by visualizing the imaginary modes, which clearly display a nuclear motion along the ring-closure coordinate. Free energy corrections are made at the standard conditions of 1 atm and 298.15 K.

**Table S1** The optimized geometries of erythrosine B (EB) (a and b), EB<sup>-</sup> (c), and EB<sup>2-</sup> (d) and their oxidized forms, calculated with the M06-2X functional combined with the 6-31G (d) basis sets for hydrogen, carbon, and oxygen and the MIDI! basis set for iodine in the solution environment (solvent = DMSO,  $\varepsilon$  = 46.826) simulated by the IEF-PCM model. Coordinates are given in Å.

(a) EB



| Atom |           | Reduced form |           |           | Oxidized form |           |
|------|-----------|--------------|-----------|-----------|---------------|-----------|
| type | Х         | у            | Z         | Х         | у             | Z         |
| С    | 3.671401  | -0.440662    | 0.074769  | 3.663110  | -0.581662     | -0.081382 |
| С    | 2.478699  | 0.242002     | 0.225091  | 2.503398  | -1.344327     | -0.114534 |
| С    | 1.249722  | -0.408841    | 0.139711  | 1.250134  | -0.743511     | -0.132432 |
| С    | 1.245407  | -1.778106    | -0.104129 | 1.196708  | 0.644480      | -0.113146 |
| С    | 2.435842  | -2.491721    | -0.267769 | 2.333317  | 1.444668      | -0.070651 |
| С    | 3.659822  | -1.825365    | -0.178095 | 3.583734  | 0.820558      | -0.057488 |
| С    | -0.029565 | 0.365521     | 0.342045  | -0.001350 | -1.578661     | -0.222298 |
| С    | -1.107668 | -1.884316    | -0.077254 | -1.202308 | 0.671674      | -0.111898 |
| С    | -1.235435 | -0.524448    | 0.171155  | -1.262663 | -0.749604     | -0.121172 |
| С    | -2.520425 | 0.006921     | 0.290287  | -2.496920 | -1.345479     | -0.095142 |
| Н    | -2.634606 | 1.068911     | 0.487438  | -2.575664 | -2.425077     | -0.094214 |
| С    | -3.645805 | -0.782764    | 0.165284  | -3.676246 | -0.574473     | -0.067659 |
| С    | -3.510909 | -2.158487    | -0.098877 | -3.590601 | 0.856867      | -0.058150 |
| С    | -2.231645 | -2.706351    | -0.218574 | -2.352347 | 1.475963      | -0.079138 |
| Н    | 2.495971  | 1.311145     | 0.415148  | 2.573368  | -2.424730     | -0.123549 |
| 0    | 0.097503  | -2.501315    | -0.205268 | -0.024950 | 1.311447      | -0.124130 |
| 0    | 4.774542  | -2.555759    | -0.344381 | 4.671835  | 1.635062      | -0.015980 |
| Н    | 5.563995  | -1.992854    | -0.257768 | 5.525242  | 1.154279      | -0.006322 |
| С    | -0.099245 | 1.616222     | -0.512939 | -0.000416 | -2.762904     | 0.731055  |
| C    | -0.141262 | 2.726371     | 0.311222  | -0.014769 | -3.945291     | 0.000638  |
| C    | -0.123124 | 1.748783     | -1.894709 | 0.018806  | -2.775080     | 2.116515  |
| С    | -0.208860 | 4.021510     | -0.191877 | -0.011572 | -5.188828     | 0.620944  |
| С    | -0.190772 | 3.041190     | -2.412256 | 0.020622  | -4.020304     | 2.749739  |
| Н    | -0.090579 | 0.882294     | -2.548352 | 0.033220  | -1.856807     | 2.689992  |
| С    | -0.233223 | 4.165241     | -1.574743 | 0.005548  | -5.212741     | 2.013708  |
| Н    | -0.240872 | 4.876948     | 0.475001  | -0.021374 | -6.100037     | 0.036494  |
| Н    | -0.211197 | 3.182407     | -3.488138 | 0.035099  | -4.065030     | 3.830967  |
| Н    | -0.285647 | 5.155194     | -2.015143 | 0.008565  | -6.160008     | 2.535693  |
| С    | -0.101516 | 2.259997     | 1.712976  | -0.028044 | -3.627932     | -1.433787 |
| 0    | -0.037253 | 0.898670     | 1.700187  | -0.023388 | -2.232394     | -1.556866 |
| 0    | -0.118292 | 2.890153     | 2.737373  | -0.041186 | -4.348361     | -2.413309 |
| 0    | -4.637493 | -2.878292    | -0.224777 | -4.761212 | 1.511699      | -0.023317 |
| Н    | -4.424691 | -3.810994    | -0.407423 | -4.686338 | 2.491217      | -0.021653 |
| Ι    | -1.981799 | -4.738555    | -0.607152 | -2.179116 | 3.549276      | -0.052830 |
| Ι    | 2.395574  | -4.536216    | -0.644730 | 2.193953  | 3.519335      | -0.018821 |
| Ι    | -5.544544 | 0.052774     | 0.366470  | -5.495909 | -1.480189     | -0.043064 |
| Ι    | 5.485591  | 0.587509     | 0.220885  | 5.531056  | -1.528875     | -0.065341 |

# (b) EB



| Atom | Reduced form |           | Oxidized form |           |           |           |
|------|--------------|-----------|---------------|-----------|-----------|-----------|
| type | Х            | у         | Z             | Х         | у         | Z         |
| С    | -2.421144    | 1.290698  | -0.203129     | -2.504014 | 1.272738  | -0.365362 |
| С    | -1.168222    | 0.661901  | -0.180116     | -1.228659 | 0.656254  | -0.258530 |
| С    | -1.133023    | 0.661901  | -0.077755     | -1.182117 | -0.761705 | -0.145464 |
| С    | -2.295529    | -1.497904 | 0.005942      | -2.327769 | -1.545383 | -0.145591 |
| С    | -3.534532    | -0.849780 | -0.011881     | -3.566193 | -0.905387 | -0.260308 |
| С    | -3.586044    | 0.559076  | -0.121136     | -3.645032 | 0.525099  | -0.370147 |
| С    | -2.468219    | 2.370710  | -0.289224     | -2.555069 | 2.352626  | -0.441956 |
| С    | 0.041563     | -1.404617 | -0.056373     | -0.007772 | -1.389228 | -0.029967 |
| С    | 0.079595     | 1.377627  | -0.249050     | -0.028439 | 1.381966  | -0.237129 |
| С    | 1.232807     | -0.763976 | -0.130311     | 1.160900  | -0.723086 | -0.017517 |
| Н    | 1.258464     | 0.676536  | -0.241183     | 1.194971  | 0.681563  | -0.131888 |
| С    | 2.552238     | 1.308056  | -0.307710     | 2.465442  | 1.354227  | -0.122956 |
| С    | 2.584954     | 2.389486  | -0.382608     | 2.469016  | 2.433452  | -0.225871 |
| С    | 2.368578     | -1.513469 | -0.093908     | 2.318906  | -1.481203 | 0.115551  |
| Н    | 3.689284     | 0.585337  | -0.277775     | 3.624161  | 0.671573  | 0.003435  |
| 0    | 3.690138     | -0.893636 | -0.164964     | 3.630084  | -0.804254 | 0.139547  |
| 0    | 4.730444     | -1.540289 | -0.131347     | 4.665923  | -1.442151 | 0.265503  |
| Н    | 0.068966     | 2.858440  | -0.421420     | -0.045650 | 2.858509  | -0.425272 |
| С    | -0.141810    | 3.756765  | 0.638973      | 0.112619  | 3.759379  | 0.640917  |
| С    | 0.269828     | 3.358197  | -1.709222     | -0.220639 | 3.343761  | -1.721465 |
| С    | -0.147868    | 5.131457  | 0.391845      | 0.101363  | 5.131657  | 0.393235  |
| С    | 0.260893     | 4.730655  | -1.945780     | -0.227232 | 4.717153  | -1.957203 |
| С    | 0.433232     | 2.663132  | -2.527302     | -0.344744 | 2.646110  | -2.543998 |
| Н    | 0.051256     | 5.618603  | -0.894993     | -0.065259 | 5.610004  | -0.902586 |
| С    | -0.304591    | 5.815159  | 1.218009      | 0.218306  | 5.819071  | 1.223105  |
| Н    | 0.419421     | 5.102382  | -2.952750     | -0.360716 | 5.084555  | -2.969057 |
| Н    | 0.045842     | 6.688173  | -1.074835     | -0.073068 | 6.678721  | -1.086219 |
| Н    | -0.332549    | 3.240886  | 2.025534      | 0.261757  | 3.227854  | 2.025464  |
| С    | -0.308795    | 2.069706  | 2.332289      | 0.237404  | 2.046641  | 2.298474  |
| 0    | -2.197644    | -3.566862 | 0.159953      | -2.216506 | -3.608774 | 0.025726  |
| 0    | 2.297887     | -3.581221 | 0.071003      | 2.262642  | -3.511553 | 0.288109  |
| 0    | -5.431937    | 1.537837  | -0.160963     | -5.505949 | 1.445013  | -0.528944 |
| Н    | 5.553488     | 1.505831  | -0.383909     | 5.458026  | 1.628687  | 0.015946  |
| Ι    | -0.536697    | 4.218282  | 2.917163      | 0.424538  | 4.186723  | 2.937277  |
| Ι    | -0.647075    | 3.799991  | 3.790193      | 0.510351  | 3.760410  | 3.809680  |
| Ι    | -4.626178    | -1.617226 | 0.076090      | -4.638489 | -1.672797 | -0.257660 |
| Ι    | -5.432826    | -1.071443 | 0.055274      | -5.458899 | -1.149614 | -0.344259 |

(c) EB<sup>-</sup>



| Atom | Reduced form |           | Oxidized form |           |           |           |
|------|--------------|-----------|---------------|-----------|-----------|-----------|
| type | х            | у         | Z             | Х         | у         | Z         |
| С    | -2.417077    | 1.304654  | -0.131537     | 2.515051  | 1.274090  | 0.370665  |
| С    | -1.167775    | 0.670115  | -0.129155     | 1.253995  | 0.705040  | 0.207583  |
| С    | -1.141004    | -0.728117 | -0.071620     | 1.174926  | -0.631179 | -0.166144 |
| С    | -2.309754    | -1.486763 | -0.018690     | 2.324067  | -1.395648 | -0.380504 |
| С    | -3.544772    | -0.833942 | -0.020093     | 3.582272  | -0.811919 | -0.213678 |
| С    | -3.586229    | 0.577633  | -0.078925     | 3.669093  | 0.540045  | 0.169926  |
| Н    | -2.452730    | 2.387456  | -0.171834     | 2.588979  | 2.317844  | 0.661344  |
| 0    | 0.028400     | -1.407596 | -0.066807     | -0.012131 | -1.272108 | -0.354732 |
| С    | 0.082317     | 1.391227  | -0.172320     | 0.018588  | 1.536737  | 0.440889  |
| С    | 1.221560     | -0.767886 | -0.131930     | -1.186390 | -0.623171 | -0.141745 |
| С    | 1.256084     | 0.669388  | -0.206236     | -1.240525 | 0.724247  | 0.245723  |
| С    | 2.551867     | 1.288437  | -0.269650     | -2.488353 | 1.341027  | 0.469358  |
| Н    | 2.591296     | 2.371462  | -0.310424     | -2.503547 | 2.383026  | 0.773617  |
| С    | 2.355371     | -1.527390 | -0.130254     | -2.344983 | -1.356138 | -0.327203 |
| С    | 3.685403     | 0.555585  | -0.273941     | -3.660571 | 0.659600  | 0.305584  |
| С    | 3.679962     | -0.921630 | -0.204589     | -3.656235 | -0.746347 | -0.116276 |
| 0    | 4.717094     | -1.580194 | -0.207594     | -4.702664 | -1.381506 | -0.284119 |
| С    | 0.075752     | 2.864149  | -0.392745     | 0.003883  | 2.811524  | -0.384898 |
| С    | -0.223543    | 3.777911  | 0.626364      | 0.008861  | 3.898672  | 0.471083  |
| С    | 0.347193     | 3.321611  | -1.687636     | -0.006812 | 2.980813  | -1.762373 |
| С    | -0.251388    | 5.138549  | 0.323517      | 0.004539  | 5.208615  | 0.003225  |
| С    | 0.317626     | 4.683679  | -1.972251     | -0.013529 | 4.289325  | -2.243627 |
| Н    | 0.577724     | 2.605081  | -2.471775     | -0.007312 | 2.132939  | -2.440852 |
| С    | 0.015260     | 5.596079  | -0.963102     | -0.007812 | 5.390209  | -1.375535 |
| Н    | -0.481095    | 5.824650  | 1.132206      | 0.010373  | 6.046573  | 0.692744  |
| Н    | 0.531362     | 5.027892  | -2.979267     | -0.022130 | 4.460757  | -3.315140 |
| Н    | -0.006125    | 6.659843  | -1.179976     | -0.011871 | 6.393218  | -1.788288 |
| С    | -0.483555    | 3.301503  | 2.062725      | 0.022581  | 3.394206  | 1.859479  |
| 0    | -0.328015    | 2.070410  | 2.252623      | 0.024979  | 2.026583  | 1.806862  |
| 0    | -0.817739    | 4.176750  | 2.887506      | 0.030602  | 3.989030  | 2.902440  |
| Ι    | -2.222335    | -3.561129 | 0.065505      | 2.174633  | -3.392012 | -0.940445 |
| Ι    | 2.269483     | -3.600075 | -0.016635     | -2.276050 | -3.333768 | -0.898664 |
| Ι    | -5.426699    | 1.569756  | -0.082758     | 5.536538  | 1.442281  | 0.429445  |
| Ι    | 5.556056     | 1.470247  | -0.372265     | -5.491926 | 1.563978  | 0.633784  |
| 0    | -4.643738    | -1.597735 | 0.033944      | 4.655114  | -1.587352 | -0.435433 |
| Н    | -5.444594    | -1.043464 | 0.027480      | 5.474691  | -1.084069 | -0.284589 |





| Atom | Reduced form |           |           | Oxidized form |           |           |
|------|--------------|-----------|-----------|---------------|-----------|-----------|
| type | Х            | у         | Z         | Х             | у         | Z         |
| С    | 2.393307     | 1.606150  | -0.311608 | 2.438654      | 1.600760  | -0.189662 |
| С    | 1.138549     | 0.956599  | -0.150297 | 1.166879      | 0.945444  | -0.085795 |
| С    | 1.146808     | -0.461953 | -0.043534 | 1.159436      | -0.489054 | 0.000873  |
| С    | 2.312456     | -1.189900 | -0.089254 | 2.307764      | -1.223446 | 0.003034  |
| С    | 3.609100     | -0.559302 | -0.255016 | 3.618420      | -0.575733 | -0.084269 |
| С    | 3.554761     | 0.903102  | -0.357895 | 3.596019      | 0.901744  | -0.186822 |
| Н    | 2.399001     | 2.687746  | -0.399811 | 2.443890      | 2.681555  | -0.273873 |
| 0    | 4.671623     | -1.193053 | -0.305045 | 4.667569      | -1.209555 | -0.077857 |
| 0    | -0.021761    | -1.138009 | 0.113554  | -0.018088     | -1.153395 | 0.083986  |
| С    | -0.084146    | 1.642629  | -0.122507 | -0.037031     | 1.648594  | -0.100613 |
| С    | -1.219280    | -0.497288 | 0.165531  | -1.206632     | -0.502083 | 0.093285  |
| С    | -1.271910    | 0.920599  | 0.062609  | -1.246579     | 0.920953  | 0.015026  |
| С    | -2.554221    | 1.532248  | 0.125293  | -2.517983     | 1.566366  | 0.038287  |
| Н    | -2.607343    | 2.612955  | 0.042146  | -2.538117     | 2.648467  | -0.021628 |
| С    | -2.352799    | -1.259559 | 0.323033  | -2.344255     | -1.257337 | 0.181077  |
| С    | -3.684455    | 0.794975  | 0.281479  | -3.668936     | 0.855489  | 0.128667  |
| С    | -3.676538    | -0.668106 | 0.388692  | -3.663521     | -0.621317 | 0.200163  |
| 0    | -4.712120    | -1.333191 | 0.524085  | -4.702875     | -1.271436 | 0.272415  |
| С    | -0.104068    | 3.135355  | -0.095722 | -0.045815     | 3.138970  | -0.079765 |
| С    | -0.217071    | 3.927197  | -1.245785 | -0.409747     | 3.902440  | -1.197650 |
| С    | -0.002223    | 3.739743  | 1.162874  | 0.307964      | 3.769816  | 1.118556  |
| С    | -0.225132    | 5.316379  | -1.104361 | -0.414193     | 5.292571  | -1.086004 |
| С    | -0.011945    | 5.125826  | 1.285418  | 0.301393      | 5.158501  | 1.210121  |
| Н    | 0.084966     | 3.114953  | 2.048233  | 0.586143      | 3.167877  | 1.979856  |
| С    | -0.124065    | 5.918983  | 0.144760  | -0.062162     | 5.923018  | 0.103148  |
| Н    | -0.313672    | 5.905779  | -2.011088 | -0.697194     | 5.861218  | -1.965615 |
| Н    | 0.067765     | 5.581643  | 2.267538  | 0.579048      | 5.638264  | 2.143345  |
| Н    | -0.132392    | 7.001484  | 0.232003  | -0.067283     | 7.006836  | 0.168778  |
| С    | -0.331579    | 3.306246  | -2.648149 | -0.778058     | 3.241554  | -2.536233 |
| 0    | -0.317407    | 2.054211  | -2.690261 | -0.652749     | 1.992729  | -2.573459 |
| 0    | -0.426822    | 4.112167  | -3.600090 | -1.160472     | 4.008027  | -3.443637 |
| Ι    | 2.296958     | -3.265021 | 0.070873  | 2.271481      | -3.290538 | 0.120502  |
| Ι    | -2.247972    | -3.332861 | 0.472826  | -2.264616     | -3.318941 | 0.285646  |
| Ι    | 5.384102     | 1.887353  | -0.586011 | 5.434507      | 1.855388  | -0.335065 |
| Ι    | -5.553840    | 1.723951  | 0.379803  | -5.516228     | 1.796284  | 0.165501  |

**Table S2** The optimized geometries of the substrate **1a** and the corresponding radical **4a**, calculated with the M06-2X functional combined with the 6-31G (d) basis sets for hydrogen, carbon, and oxygen and the MIDI! basis set for iodine in the solution environment (solvent = DMSO,  $\varepsilon = 46.826$ ) simulated by the IEF-PCM model. Coordinates are given in Å.

| Atom<br>type | OMe       |           |           | O O<br>OMe |           |           |
|--------------|-----------|-----------|-----------|------------|-----------|-----------|
|              |           | ❤   1a    |           | ✓ 4a       |           |           |
|              | Х         | У         | Z         | Х          | у         | Z         |
| С            | 1.211390  | -0.947218 | -0.854989 | 1.278994   | -0.936637 | -0.826396 |
| С            | 0.823671  | -0.306742 | 0.487699  | 0.915051   | -0.333121 | 0.543580  |
| С            | 1.963980  | -0.611028 | 1.491465  | 2.057234   | -0.622576 | 1.545583  |
| С            | 3.327611  | -0.159586 | 0.965016  | 3.424510   | -0.187306 | 1.016800  |
| С            | 3.653231  | -0.820642 | -0.374807 | 3.733313   | -0.848506 | -0.326691 |
| С            | 2.555698  | -0.529009 | -1.413756 | 2.638524   | -0.532552 | -1.359862 |
| Н            | 1.726728  | -0.108414 | 2.433872  | 1.823458   | -0.109346 | 2.483316  |
| Н            | 3.327448  | 0.933002  | 0.852247  | 3.437667   | 0.904092  | 0.908379  |
| Н            | 4.099686  | -0.398321 | 1.703660  | 4.196959   | -0.443049 | 1.749557  |
| Н            | 4.619284  | -0.473210 | -0.753931 | 4.704176   | -0.518423 | -0.709631 |
| Н            | 3.735358  | -1.906165 | -0.235259 | 3.795233   | -1.936376 | -0.194703 |
| Н            | 2.534480  | 0.544478  | -1.632371 | 2.625055   | 0.548662  | -1.555619 |
| Н            | 2.719999  | -1.074626 | -2.345564 | 2.800507   | -1.051497 | -2.307341 |
| Н            | 1.977444  | -1.693070 | 1.676979  | 2.057479   | -1.701544 | 1.744333  |
| 0            | 0.539345  | -1.822731 | -1.346342 | 0.554345   | -1.715489 | -1.397077 |
| С            | 0.656463  | 1.208987  | 0.406008  | 0.756513   | 1.186563  | 0.402261  |
| 0            | 0.662956  | 1.930579  | 1.371535  | 1.068479   | 1.997865  | 1.237565  |
| 0            | 0.449293  | 1.635269  | -0.843773 | 0.164724   | 1.507084  | -0.759046 |
| С            | 0.108541  | 3.019305  | -0.962562 | -0.100668  | 2.899332  | -0.938320 |
| Н            | -0.045022 | 3.194174  | -2.025686 | -0.566609  | 2.987683  | -1.918129 |
| Н            | -0.805151 | 3.223244  | -0.400018 | -0.773199  | 3.258320  | -0.156325 |
| Н            | 0.917333  | 3.643424  | -0.576935 | 0.828991   | 3.471214  | -0.897079 |
| С            | -0.472618 | -0.899735 | 1.038240  | -0.396146  | -0.850654 | 1.033355  |
| Н            | -0.432209 | -1.986337 | 0.975134  | -1.064001  | -1.358389 | 0.351876  |
| Н            | -0.614746 | -0.578447 | 2.070033  | -0.720395  | -0.598169 | 2.035507  |
| Ι            | -2.263041 | -0.320579 | 0.002125  | -          | -         | -         |

**Table S3** The SCF and thermal energies for the redox states of EB, EB<sup>-</sup>, and EB<sup>2-</sup>, calculated with the M06-2X functional combined with the 6-31G (d) basis sets for hydrogen, carbon, and oxygen and the MIDI! basis set for iodine in the solution environment (solvent = DMSO,  $\varepsilon = 46.826$ ) simulated by the IEF-PCM model. Free energy corrections are made at the standard conditions of 1 atm and 298.15 K. Energies are given in hartree/particle.

| Erythrosine B     |                                             | Reduced form  | Oxidized form |
|-------------------|---------------------------------------------|---------------|---------------|
|                   | E(RM062X) or E(UM062X)                      | -28707.043805 | -28705.412000 |
|                   | Zero-point correction                       | 0.236923      | 0.237148      |
| но. 🗼 .о. 🗼 .он   | Thermal correction to Energy                | 0.260969      | 0.261850      |
|                   | Thermal correction to Enthalpy              | 0.261914      | 0.262795      |
|                   | Thermal correction to Gibbs Free Energy     | 0.179042      | 0.175792      |
|                   | Sum of electronic and zero-point Energies   | -28706.806882 | -28705.174852 |
|                   | Sum of electronic and thermal Energies      | -28706.782835 | -28705.150150 |
|                   | Sum of electronic and thermal Enthalpies    | -28706.781891 | -28705.149205 |
|                   | Sum of electronic and thermal Free Energies | -28706.864763 | -28705.236208 |
|                   | E(RM062X) or E(UM062X)                      | -28707.027536 | -28706.806598 |
| l i i             | Zero-point correction                       | 0.235625      | 0.234662      |
|                   | Thermal correction to Energy                | 0.261556      | 0.260636      |
|                   | Thermal correction to Enthalpy              | 0.262501      | 0.261580      |
|                   | Thermal correction to Gibbs Free Energy     | 0.172387      | 0.170314      |
| CO <sub>2</sub> H | Sum of electronic and zero-point Energies   | -28706.791911 | -28706.571936 |
|                   | Sum of electronic and thermal Energies      | -28706.765980 | -28706.545962 |
|                   | Sum of electronic and thermal Enthalpies    | -28706.765035 | -28706.545018 |
|                   | Sum of electronic and thermal Free Energies | -28706.855149 | -28706.636284 |
|                   | E(RM062X) or E(UM062X)                      | -28706.559161 | -28706.398292 |
| ! !               | Zero-point correction                       | 0.222266      | 0.223619      |
| но                | Thermal correction to Energy                | 0.247995      | 0.248428      |
|                   | Thermal correction to Enthalpy              | 0.248939      | 0.249372      |
|                   | Thermal correction to Gibbs Free Energy     | 0.159350      | 0.161832      |
| $\int co_2$       | Sum of electronic and zero-point Energies   | -28706.336895 | -28706.174674 |
|                   | Sum of electronic and thermal Energies      | -28706.311166 | -28706.149864 |
|                   | Sum of electronic and thermal Enthalpies    | -28706.310222 | -28706.148920 |
|                   | Sum of electronic and thermal Free Energies | -28706.399811 | -28706.236461 |
|                   | E(RM062X) or E(UM062X)                      | -28706.103184 | -28705.920287 |
| ! !               | Zero-point correction                       | 0.209279      | 0.208586      |
|                   | Thermal correction to Energy                | 0.233940      | 0.234238      |
|                   | Thermal correction to Enthalpy              | 0.234884      | 0.235182      |
|                   | Thermal correction to Gibbs Free Energy     | 0.147355      | 0.144212      |
|                   | Sum of electronic and zero-point Energies   | -28705.893905 | -28705.711701 |
|                   | Sum of electronic and thermal Energies      | -28705.869244 | -28705.686049 |
|                   | Sum of electronic and thermal Enthalpies    | -28705.868300 | -28705.685105 |
|                   | Sum of electronic and thermal Free Energies | -28705.955829 | -28705.776075 |

**Table S4** The SCF and thermal energies of the substrate **1a**, the corresponding radical **4a**, and iodide ion, calculated with the M06-2X functional combined with the 6-31G (d) basis sets for hydrogen, carbon, and oxygen and the MIDI! basis set for iodine in the solution environment (solvent = DMSO,  $\varepsilon$  = 46.826) simulated by the IEF-PCM model. Free energy corrections are made at the standard conditions of 1 atm and 298.15 K. Energies are given in hartree/particle.

|                                             | OMe<br>1a    | OMe<br>4a   | I-           |
|---------------------------------------------|--------------|-------------|--------------|
| E(RM062X) or E(UM062X)                      | -7467.320124 | -576.157986 | -6891.259474 |
| Zero-point correction                       | 0.215947     | 0.210626    | 0.000000     |
| Thermal correction to Energy                | 0.229242     | 0.222928    | 0.001416     |
| Thermal correction to Enthalpy              | 0.230187     | 0.223872    | 0.002360     |
| Thermal correction to Gibbs Free Energy     | 0.174538     | 0.172012    | -0.016848    |
| Sum of electronic and zero-point Energies   | -7467.104177 | -575.947360 | -6891.258058 |
| Sum of electronic and thermal Energies      | -7467.090882 | -575.935058 | -6891.259474 |
| Sum of electronic and thermal Enthalpies    | -7467.089938 | -575.934114 | -6891.257113 |
| Sum of electronic and thermal Free Energies | -7467.145586 | -575.985974 | -6891.276322 |

#### 6. References

- S1 A. L. J. Beckwith, D. M. O'Shea and S. W. Westwood, J. Am. Chem. Soc., 1988, 110, 2565–2575.
- S2 P. Dowd and S. C. Choi, *Tetrahedron*, 1989, 45, 77–90.
- S3 J. Feierfeil, A. Grossmann and T. Magauer, Angew. Chem., Int. Ed., 2015, 54, 11835–11838.
- S4 B. Hu, H. Chen, Y. Liu, W. Dong, K. Ren, X. Xie, H. Xu and Z. Zhang, Chem. Commun., 2014, 50, 13547–13550.
- S5 M. Boumediene, R. F. Guignard and S. Z. Zard, *Tetrahedron*, 2016, 72, 3678–3686.
- S6 J. Matsuo, M. Okano, K. Takeuchi, H. Tanaka and H. Ishibashi, *Tetrahedron: Asymmetry*, 2007, 18, 1906–1910.
- S7 I. Geibel and J. Christoffers, Eur. J. Org. Chem., 2016, 918–920.
- S8 P. Gobbo, P. Gunawardene, W. Luo and M. S. Workentin, Synlett, 2015, 26, 1169–1174.
- S9 Gaussian 09, revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin,; Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
- S10 Y. Zhao and D. G. Truhlar, J. Chem. Phys., 2006, 125, 194101.
- S11 (a) E. Cancès, B. Mennucci and J. Tomasi, J. Chem. Phys., 1997, 107, 3032–3041; (b) B. Mennucci, R. Cammi and J. Tomasi, J. Chem. Phys., 1998, 109, 2798–2807; (c) J. Tomasi, B. Mennucci and E. Cancès, J. Mol. Struct.: THEOCHEM, 1999, 464, 211–226; (d) J. Tomasi, B. Mennucci and R. Cammi, Chem. Rev., 2005, 105, 2999–3093.

### 7.1H and 13C spectra

product-7membered-2017.6.8.esp































