Precision Excimer Laser Annealed Ga-doped ZnO Electron Transport Layer for Perovskite Solar Cells

Rui Xia,^{ab} Guangyue Yin,^{ac} Shimao Wang,^{ad} Weiwei Dong,^{*ad} Libing You,^a Gang Meng,^{ad} Xiaodong Fang,^{*acd} Mohammad Khaja Nazeeruddin,^b Zhaofu Fei,^b Paul J. Dyson^{*b}

^aAnhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China

^bInstitut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.

^c University of Science and Technology of China, Hefei 230026, China.

^dKey laboratory of photovoltaic and energy conservation materials, Chinese Academy of Sciences, Hefei 230031, China

E-mail: wwdong@aiofm.ac.cn (W. Dong), xdfang@aiofm.ac.cn (X. Fang), paul.dyson@epfl.ch

Fig S1 Surface SEM images of (a) ELA 90-30 and (b) ELA 105-1, the inset is ELA 105-20.

Fig S2 Transmittance spectra of GZO films with ELA treatment when (a) laser fluence is fixed at 90 mJ cm⁻² and (b) pulse counts are fixed at 20. (c) $(\alpha hv)^2$ vs hv plots of the GZO films with different treatments.

Fig S3 XRD patterns of GZO films with ELA treatment when (a) laser fluence is fixed at 90 mJ cm⁻² and (b) pulse counts are fixed at 20.

Fig. S4 Variation of the surface temperature with the time after loading 1 pulse with different fluence.

Table S1 Parameters used in ANSYS simulation process¹⁻³. When t = 0, $t = T_0$ (27 °C), it is assumed that there is no heat loss on the surface of the films and the thickness of the sample is sufficient for the diffusion of heat inside⁴.

Parameters	GZO	Glass
Density (kg/m ³)	5675	2400
Specific heat capacity J (kg K) ⁻¹	552	837
Thermal conductivity (W m ⁻¹ K ⁻¹)	23.4	1.1
Melt point (°C)	1975	800

Fig. S5 Hysteresis analysis of the devices based on ELA 90-20 at a scan rate of 50 mV s^{-1}

Reference

- D. R. Lide, CRC Handbook of Chemistry and Physics, 79th Ed; CRC Press, Boca Raton, FL, 1998.
- [2] A. F. Wells, Structural Inorganic Chemistry, Clarendon Press: Oxford, 1990.
- [3] W. W. Duley, UV Laser: effects and applications in materials science. Cambridge University Press, Cambridge, UK, **1996**, 100–101.
- [4] R. F. Wood, G. E. Giles, *Phys. Rev. B*, 1981, 23, 2923.