Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2018

Tetrakis((ethyl-4(4-butyryl)oxyphenyl)porphyrinato Zinc Complexes with 4,4'bpyridin: Synthesis, Characterization, and its catalytic degradation of Calmagite

Raoudha Soury,^{1,3} Mahjoub Jabli², Tawfik A Saleh ^{4*}, Wathiq Sattar Abdul-Hassan,³ Eric Saint-Aman,³ Frédérique Loiseau,³ Christian Philouze,⁵ and Habib Nasri¹

¹ Laboratory of Physico-Chemical of Materials, Faculty of Sciences of Monastir, 5000 Monastir, University of Monastir, Tunisia.

² Textile Materials and Process Research Unit, ENIM, 5000 Monastir, University of Monastir.

- ³ Department of Molecular Chemical, UMR CNRS 5250, ICMG-FR 2607, Laboratory of Inorganic Chemistry Rédox, 301 Rue de la Chimie, BP 53-38041 Grenoble Cedex 9, University J. Fourier, France.
- ⁴ Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia

⁵ Department of Molecular Chemicals (CNRS/UGA) Bâtiment chimie recherche, 301 rue de la chimie, domaine universitaire, Saint-Martin-d'Heres, Gieres, CS 40700, 38058 Grenoble CEDEX 9, France.

*Corresponding author

E-mail address: tawfik@kfupm.edu.sa; tawfikas@hotmail.com

Supporting information

Tables of contents	Pages
 X-ray . ¹H NMR Spectra of compounds Electrochemistry 	page 1-3. page 3-5 page 6

Figure S1. Schematic representation of the interactions involving the 4,4'-bipyridine axial ligand of complex 3.

Figure S2. Drawings showing (**a**) : the α dihedral angle between the "Np-M-NL" plan (Np is the closeted pyrrole nitrogen atom) and the first pyridyl moiety of the 4,4'-bipyridine axial ligand, (**b**) : the β dihedral angle between the two pyridyl rings of the 4,4'-bipyridine and (**c**) : the coordination geometry of the Zn²⁺ cation in complex **3**.

 Table S1. Crystal and refinement data of [Zn(TEBOP)(4,4'-bpy)] (3).

Parameters	Complex 3
Empirical formula	$C_{78}H_{76}N_6O_{12}Zn$
Formula weight	1354.87
Cryst. Sym	Monoclinic
Space group	C 2/c
a(Å)	25.890(5)
b(Å)	18.024(5)
c(Å)	18.699(5)
β (°)	127.821(5)
V (Å ³)	6893(3)
Z	4
Dcalc, (g/cm ³)	1.306
μ (mm ⁻¹)	0.424
Max./min. trans.	1.000/0.624
F(000)	2848
Crystal size (mm ³)	0.49 x 0.41x 0.27
Т (К)	200(2)
Θ range (°)	2.55-26.37
Limiting indices	-32 ≤h ≤ 29, -21 ≤ k ≤ 22,
-	-23 ≤ l ≤ 23
Reflec. collec/unique	46070/7020
Parameters	570
S [Goodness of fit]	1.119
R_1^a , w R_2 [Fo> 4 σ (Fo)]	$R_1 = 0.0798$, $wR_2 = 0.2129$
R ₁ , wR ₂ ^b [all data]	R ₁ = 0.1130, wR ₂ =0.2634
Min./max. res. (eÅ-3)	0.956 and -0.875
CCDC	1060414

Table S2. Selected bond distances (A	and angles (°) in the molecular structure	s of [Zn(TEBOP)(4,4'-bpy)] (3).
--------------------------------------	---	---------------------------------

Complex 2								
Zinc coordination polyhedron								
Zn–N1	2.057 (3)							
Zn–N2	2.078 (3)							
Zn–N3	2.152 (5)							
N1—Zn—N2	88.62 (14)							
N1—Zn—N3	97.69 (10)							
N2—Zn—N3	99.73 (11)							
4,4'-bipyridine	4,4'-bipyridine ligand							
N3– C38	1.324 (6)							
C38–C39	1.387 (7)							
C39–C40	1.377 (7)							
C40-C41	1.517 (11)							
C41–C42	1.394 (10)							
C42–C43	1.382 (11)							
N4–C43	1.344 (12)							

Table S3. Selected bond lengths (Å) and angles (°) for **3**, and some 4,4'-bipyridine porphyrinic and non-porphyrinic complexes.

Complexes	M–N _p ^a	Zn—N _L b	α (°)	β	(°) Ref.
	Zn-(4,4'-bpy) porphyri	n complexes			
[Zn(TEBOP)(4,4'-bpy)] (3)	2.0675(3)	2.151(2)	37	36	Current work
[Zn(TOHP) ₂ (4,4'-bpy)] ^c	2.041	2.134	3	1	[1]
	2.030	2.144			
[Zn(TPP) ₃ (4,4'-bpy) ₂]	2.049(8)	2.185(8)	23	24	[2]
	2.055	2.490	4		
[Zn(TPP) ₂ (4,4'-bpy)]	2.065	2.169(6)	5	38	[2]
	2.081	2.270(7)	7	46	
	M-(4,4'-bpy) porphyrin com	plexes (M = Co, Fe)			
[Co(TPP)(4,4'-bpy)]	1.993	2.342	12	38	[3]
$\{[Co(TpivPP)(4,4-bpy)_2]\}_n^d$	1.984 ^e	2.312 ^{e,f}	19	38	[3]
	1.976 ^e	2.311 ^{e,f}	23	35	
[Fe(TPP)(bpy)]	1.990	1.985	33	30	[4]
	Zn-(4,4'-bpy) non-porphy	rinc complexes			
[Zn(4,4'-bpy) ₂ (H ₂ O) ₄](ClO ₄) ₂ .(4,4'-bpy)	-	2.117(2)	-	2	[5]
${[Zn(\mu_2-4,4'-bpy)(\mu_4-BPTC)]_n^g}$	-	2.044	-	0	[6]
{[Zn(µ ₂ -4,4'-bpy) ₂ (µ-FA) ₂]} _n ^h	-	2.114 ⁱ	-	48	[7]

^a : Average equatorial zinc-nitrogen pyrrole distance.

^b :N-coordinated zinc atom of the axial ligand L

c:TOHPP = 5,10,15,20-tetrakis(4-hydroxyphenyl)porphyrinato.

^d : TpivPP = *mes*o-4^[2]-tetrapivalamidophenylporphyrinato.

e: The asymmetic unit contains two [Co(TpivPP)(4,4'-bpy)₂] molecules.

f : Average values of the two Co-N(bpy) distances.

^g : BPTC = biphenyl-3,3',5,5'-tetracarboxylato.

^h : FA = format-O (CH2O2).

ⁱ :Average values of the two Zn_N(bpy) distances.

Table S4.	Selected hv	drogen bon	ds and interm	olecular C–H	$c_g \pi$ interactions of	f complex [Z	n(TEBOP)(4	1.4'-bpv)	1(3)
	Julutury	ULUGCII DUII	us and micerni			1 COMPICA 12		$r_{i} \rightarrow \nu_{i} \rightarrow \nu_{i}$	112

D ^a –H····A ^b	Symmetry of A	D A (Å)	D –H A (°)
C19–H19B…O1	x, y, z	2.825(11)	106
C21–H21b O2	x, y, z	2.57(2)	103
C33A–H33B O5A	x, y, z	2.85(5)	104
C37A–H37C O5A	x, y, z	2.95(5)	113
C37A–H37C O2	−x, y, −z+1/2	3.40(4)	139
C43–H43 O5A	-x+1/2,y+1/2, -z+3/2	3.37(3)	140
C15—H15 Cg1	x+3/2, y+1/2, z+1	3.503(5)	138
C18—H18A Cg9	x+3/2, y+1/2, z+1	3.80(11)	170
C18—H18B Cg2	-x+1/2, y+1/2, -z-1/	3.773(9)	138
C32A—H32A Cg7	-x+1/2, -y+1/2, -z+1	3.543(11)	135
C32A—H32A Cg7	x-1/2, -y+1/2, z-3/2	3.543(11)	135
C25B—H25B Cg2	-x+1/2, -y+1/2, -z+1	3.34(2)	145
C37B—H37D Cg9	−x, y, −z+1/2	3.82(3)	143

atom.

^b: A = acceptor atom.

Complex **3**: Cg1, Cg2, Cg7 and Cg9 are the centroids of the N1-C1/C4, N2-C6/C9, N3-C38-C39-C40-C38A-C39A-C40A, C11/C16 rings respectively.

2.¹H NMR

2.1. ¹H NMR Spectra of ethyl-4(4-butyryl)oxyphenylaldehyde

Figure S3. ¹H NMR spectrum of ethyl-4(4-butyryl)oxyphenylaldehyde in CDCl₃.

2.1. ¹H NMR Spectra of compound (3)

Figure S5. ¹³C DEPT spectrum of complex 3 in CDCl₃

		Ring oxidations											Ring reductions					
	1 st oxidation (O1, R1)		2 nd oxidation (O2, R2)		3 th oxidation (O3, R3)		1	1 st reduction		2 nd reduction								
	Epa ^b	E _{pc} ^c	E _{1/2} ^d	E _{pa}	E _{pc}	E _{1/2}	E _{pa}	E _{pa}	E _{1/2}	E _{pc}	E _{pa}	E _{1/2}	E _{pc}	E _{pa}	E _{1/2}			
H ₂ TPP	-	-	1.02	-	-	1.26	-	-	-	-	-	-1.20	-	-	-1.55	[8]		
H ₂ TPP	-	-	1.08	-	-	1.35	-	-	-	-	-	-1.21	-	-	-	[9]		
H ₂ TTP ^e	-	-	0.62	-	-	-	-	-	-	-	-	-1.12	-	-	-1.54	[10]		
H ₂ TEBOP (1)	-	-	0.96	-	-	1.13	-	-	-	-	-	-1.26	-	-	-1.60	this work		
[Zn(TPP)]	-	-	0.84*	-	-	1.13*	-	-	-	-	-	-1.31*	-	-	-1.75 *	[11]		
[Zn(TEBOP)] (2)	-	-	0.64	-	-	0.94	-	-	-	-	-	-1.42	-	-	-	this work		
[Zn(TDCPP)]	-	-	1.06	-	-	1.36	-	-	-	-	-	-1.20	-	-	-1.68 *	[11]		
[Zn(TPFPP)] ^f	-	-	1.37	-	-	1.58	-	-	-	-	-	-0.95	-	-	-1.37	[11]		
[Zn(TEBOP)(4 <i>,</i> 4'-bpy)] (3)	0.68	0.61	0.64	0.98	0.90	0.94	1.41	1.25	1.33	-1.50	-1.42	-1.46	-	-	-	this work		
[Zn(TPP)(HIm)]	-	-	0.70*	-	-	1.40*	-	-	-	-	-	-1.40*	-	-	-1.75 *	[11]		
[Zn(TPP)(2-Meim)]	-	-	0.71*	-	-	1.37*	-	-	-	-	-	-1.45*	-	-	-1.75 *	[11]		
[Zn(TMP)(HIm)]	-	-	0.63*	-	-	1.26*	-	-	-	-	-	-1.55*	-	-	-	[11]		
[Zn(TPP)(2-Meim)]	-	-	0.63*	-	-	1.23*	-	-	-	-	-	-1.60*	-	-	-	[11]		

Table S5. Electrochemical data for complex 3 and a selection of related zinc metalloporphyrins in dichloromethane (exceptions are indicated).

^a :The potentials are reported versus SCE.
^b : Epa = anodic peak potential.
^c : Epc = cathodic peak potential.
^d : E_{1/2} = half wave potential.
^e : in THF.

^f: TPFPP : is the dianion of the tetrapentafluorophenylporphyrin.

* : Irreversible wave.

Notes and references

- 1. Y. Diskin-Posner, G. K. Patra and I. Goldberg, *Chem, Commun*, 2002, 1420-1421.
- 2. A. D. Shukla, P. C. Dave, E. Suresh, A. Das and P. Dastidar, Dalton Tran.s, 2000, 4459-4463.
- 3. A. Mansour, Y. Belghith, M. Salah Belkhiria, A. Bujacz, V. Guérineau and H. Nasri, J. Porphyrins Phthalocyanines, 2013, 17, 1094–1103.
- 4. A. Fidalgo-Marijuan, G. Barandika, B. Bazán, M. K. Urtiaga , L. Lezama, M. I. Arriortua, Inorg. Chem., 2013, 52, 8074–8081.
- 5. L. Dolatyari, P. Seddigi, A. Ramazani, M. G. Amiri, and A. Morsali, J. Struct Che.m, 2013, 54, 571-576.
- 6. Q. Li and J. Qian, *RSC Advances*, 2014, **14**, 32391-32397.
- 7. X.-H. Miao, H.-P. Xiao and L.-G. Zhu, Acta, Crystallogr, Sect. E., 2006, 62, m1756-m1757.
- 8. K. M. Kadish and M. M. Morrison, J. Am. Chem. So.c, 1976, 98, 3326-3328.
- 9. A. Giraudeau, H. J. Callot and M. Gross, Inorg. Chem., 1979, 18, 201-206.
- 10. K. M. Kadish, J. D. Dubois, J.-M. Barbe, and R. Guilard, *Inorg. Chem.*, 1991, **30**, 4498-4501.
- 11. C.-I. Lin, M.-Y. Fang and S.-H. Cheng, J. Electroanal. Chem., 2002, **531**, 155-162.