Supplementary Material

Deamidation of the human eye lens protein γS-crystallin accelerates oxidative aging

Brenna Norton-Baker^{1,2}, Pedram Mehrabi^{2,3}, Ashley O. Kwok¹, Kyle W. Roskamp¹, Megan A. Rocha¹,

Marc A. Sprague-Piercy⁴, David von Stetten⁵, R.J. Dwayne Miller⁶, Rachel W. Martin^{1,4}*

¹ Department of Chemistry, University of California, Irvine 92697-2025, United States

⁴ Department of Molecular Biology and Biochemistry, University of California, Irvine 92697-3900, United States ⁵ European Molecular Biology Laboratory, Hamburg Unit c/o Deutsches Elektronen-Synchrotron, Hamburg,

Germany

⁶ Departments of Chemistry and Physics, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada

*to whom correspondence should be addressed:

rwmartin@uci.edu

² Department for Atomically Resolved Dynamics, Max-Planck-Institute for Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany

³ Institute for Nanostructure and Solid-State Physics, Universität Hamburg, HARBOR, Luruper Chaussee 149, 22761 Hamburg, Germany

Figure S1, related to Figure 2. (A) The average fluorescence intensity from three replicates measured by differential scanning fluorimetry (DSF) for γ S-crystallin wild-type (γ S-wt, black), 3-site (γ S-3, yellow), 5-site (γ S-5, blue), 7-site (γ S-7, green), and 9-site deamidation variants (γ S-9, pink). Data are represented as mean \pm SD. (B) The average fluorescence intensity for each protein with overlaid solid lines showing the Boltzmann fit curves calculated for each data set. Only the region of the DSF data up to the fluorescence maxima are used for the Boltzmann fit.

Figure S2, related to Figure 3. SAXS profiles for (A) γ S-wt, (B) γ S-3. (C) γ S-5, (D) γ S-7, and (E) γ S-9 with concentrations ranging from approximately 40 mg/mL down to either 16 mg/mL (γ S-7 and γ S-9) or 8 mg/mL (γ S-wt, γ S-3, and γ S-5). Each concentration series was measured in triplicate. (F) The intensity at zero angle over concentration as a function of concentration. Measurements were performed in triplicate. Data are represented as mean \pm SD. The y-intercept of the linear regression gives the intensity at zero angle extrapolated to zero concentration.

Figure S3, related to Figure 4. Structure alignment of the previously reported NMR structure of γ S-wt (PDB: 2M3T) and the novel crystal structure reported here (PDB:7N36). The script *colorbyrmsd* in Pymol was used to highlight areas of minimum pairwise RMSD in blue and maximum in red. The loop containing K154 and K155 as well as the linker region between domains show the maximum difference.

Figure S4, related to STAR Methods. Calibration curve for Ellman's assay in 2% SDS, 100 mM TRIS pH 8.0 using dithiothreitol (DTT). Measurements were performed in triplicate. Data are represented as mean \pm SD. The concentration of thiol is 2× the concentration of DTT. The extinction coefficient calculated is 12968 M⁻¹cm⁻¹.

Figure S5, related to Figure 5. (A) Absorbance at 412 nm after the addition of DTNB for γ S-wt and each variant. (B) Normalized absorbance at 412 nm for each reaction. Increasing number of deamidated sites leads to longer reaction times to maximum Abs₄₁₂.

Figure S6, related to Figure 5. (A) Assessment of free thiol concentration over time using Ellman's assay for γ S-crystallin wild-type (γ S-wt, black), 3-site (γ S-3, yellow), 5-site (γ S-5, blue), 7-site (γ S-7, green), and 9-site deamidation variant (γ S-9, pink). Measurements were performed in triplicate. Data are represented as mean \pm SD. Proteins were aged at 210 – 250 μ M which was diluted 40-fold for these measurements.

Figure S7, related to Figure 4. Adaptive Poisson-Boltzmann Solver (APBS) electrostatics calculation was used to generate surface charge maps in PyMol for (A) γ S-wt PDB:7N36, (B) γ S-3 PDB:7N37, and (C) γ S-9B PDB:7N3B showing regions of high negative charge with increasing deamidation.

Codon-optimized yS-wt sequence with NcoI and XhoI restriction sites:

CCATGGGACATCACCATCACCATCACGAAAATCTTTATTTTCAAGGCAGCAAAACGGGCACCAAAATCACGTTC TACGAAGACAAAAATTTCCAAGGTCGCCGTTACGACTGTGACTGCGGACTGTGCGGACTTCCACACATACCTGTC CCGTTGCAACTCTATCAAAGTTGAAGGCGGCACCTGGGCTGTATACGAACGCCCGAACTTCGCTGGCTACATGT ACATCCTTCCGCAGGGCGAATACCCGGAATACCAGCGCTGGATGGGTCTGAACGACCGTCTGTCGTCTTGCCGC GCTGTACATCTGCCGTCCGGCGGTCAGTACAAAATCCAGATCTTCGAAAAAGGCGACTTCTCCGGCCAGATGTA CGAAACCACCGAAGACTGCCCGTCTATCATGGAACAATTCCACATGCGCGGAAATCCACTCTTGTAAAGTTCTGG AAGGCGTATGGATCTTCTACGAACTGCCGAACTACCGCGGTCGCCAGTACCTGCTGGACAAAAAAGAATACCGC AAACCGATCGACTGGGGCGGCGCCTCTCCGGCTGTACAGAGCTTCCGTCGTGTGAATAATAACTCGAG

Table S1, related to STAR Methods. Oligonucleotides for PCR mutagenesis. A mistranslation of Y11 was identified in the deamidated variants and was corrected by the application of primers *codonY11_fwd* to γ S-3 and γ S-5 and *codonY11_fwd_2* to γ S-7 and γ S-9 with *codonY11_rev* used for all deamidated variants.

Primer	Sequence (5' to 3')													
N15_fwd	GAC AAA	GAT T	CC CAA	GGT	CGC									
N15_rev	GCG ACC	TTG G	AA ATC	TTT	GTC									
Q121_fwd	ATC ATC	GAA G	AA TTC	CAC	ATG									
Q121_rev	CAT GTO	GAA T	C TTC	CAT	GAT									
N144_fwd	TAC GAA	CTG C	CG GAC	TAC										
N144_rev	GTA GTO	CGG C	AG TTC	GTA										
N54D_fwd	CCG GAG	TTC G	CT GGC	TAC	ATG	TAC	ATC	CTT	CCG					
N54D_rev	GCG TTC	GTA T	AC AGC	CCA	GGT	GCC	GCC	TTC						
Q93E_fwd	CGT CCC	GCG G	rg agt	ACA	AAA	TCC	AGA	TCT	TCG	AAA	AAG	GCG		
Q93E_rev	GCA GAI	GTA C	AG CGC	GGC	AAG	ACG	ACA	GAC	GG					
Q64E_fwd	CTT CCC	GAG G	GC GAA	TAC	CCG	GAA	TAC	CAG	С					
Q64E_rev	GAT GTA	CAT G	FA GCC	AGC	GAA	GTC	CGG	GCG	TTC	GTA	TAC			
Q17E_fwd	GAA GAC	AAA G	AT TTC	GAA	GGT	CGC	CGT	TAC	GAC	TGT	GAC	ΤG		
Q17E_rev	GTA GAA	CGT G	AT TTT	GGT	GCC	CGT	TTT	GCT	GCC	TTG				
Q107E_fwd	GGC GAG	ATG T	AC GAA	ACC	ACC	GAA	GAC	TGC	CCG	TCT	ATC			
Q107E_rev	GGA GAA	GTC G	CC TTT	TTC	GAA	GAT	CTG	GAT	TTT	GTA	CTC	ACC	GCC	G
Q71E_fwd	GGA ATA	CGA G	CG CTG	GAT	GGG	TCT	GAA	CGA	CCG	TCT	GTC	G		
Q71E_rev	GGG TAI	TCG C	CC TCC	GGA	AGG	ATG	TAC	ATG	TAG	CCA	GCG			
codonY11_fwd	CAA AGA	CTT C	CA AGG	TCG	CCG	TTA	С							
$codonY11_fwd_2$	CAA AGA	CTT C	GA AGG	TCG	CCG	TTA	С							
codonY11_rev	TCT TCA	TAG A	AC GTG	ATT	TTG	GTG	CC							