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SUPPORTING INFORMATION 

This supporting information presents some information on how capillary instabilities can prevent the 

stability of the filaments formed during the shaping process.

The capillary instabilities was first treated by Rayleigh in 1879 for a jet of a viscous fluid in air and 

extended by Tomotika 1-3 to the case of a single cylindrical viscous thread embedded in a quiescent 

Newtonian medium (after the flow is stopped). This theory assumes that under affine deformation 

conditions Ca /Ca(crit)>2, once the droplet has become highly extended, very small sinusoidal 

disturbances appear on the surface of the fibril. Distortions with a wavelength (λ) larger than the 

original circumference of the fibril, 2πR0, will lead to a decrease in interfacial surface area and thus 

only these distortions can grow (Figure 2).

Figure 1. Schematic representation of capillary instability (sinusoidal distortion) appearing during 

extension of a cylindrical thread with initial radius R0. is the average radius, ε is the 2/22
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amplitude of the distortion, λ is the wavelength and z is the Cartesian coordinate along the principal 

axis of the cylinder.

A dimensionless wave number of distortion, X, is given by X=2πR0/λ where X varies between zero 

and unity. The distortion amplitude, ε, is assumed to increase exponentially with time, given by: 

 where ε0 is the amplitude of the distortion at time t=0. A lower limit of ε0, is given by )exp(0 qt 

thermal fluctuations and was estimated by Kuhn 4: 
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Where κB is the Boltzmann constant, T is the absolute temperature and Γd,m the interfacial tension. 

According to Kuhn 4, ε0≈ 10-9 m for d,m= 10 mN.m-1. 

The growth rate of the distortion (q) is given by 

Eq. 602 Rkq mmd /)X,(, 

Where ηm is the matrix viscosity, R0 is the initial radius of the thread and Ω(k, X) is a complex 

function of the characteristic wave number, X, of the perturbation and the viscosity ratio, k, of the 

system concerned. When the function Ω(k, X) is maximal, the break-up of the thread occurs. Values of 

Ω(k, X) can be calculated from Tomotika's original equations2. The values of the dominant growth rate 

Ω(k, Xm) and the dominant wave number Xm(Xm=2πR0/λm) are plotted against viscosity ratio k in 

Figure 3 by Janssen and Meijer 5. For 0.01≤k≤10, Utracki and Shi 6 used the following equation to fit 

the function Ω(k,λm): 
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where b0= -2.588, b1= -1.154, b2= 0.03987, b3= 0.0889, and b4= 0.01154.
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Figure 2. The wavenumber and growth rate of the dominant wavelength (Janssen and Maijer5).
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Tomotika2estimated that the breakup occurs when the amplitude of the deformation ε reached a critical 

value corresponding to the average radius of the thread where εb = = 0.81.R0 and 
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 according to the condition of conservation of volume (Figure 2). )/( 222
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