Supporting Information

A Fluorescent Calixarene-based Dimeric Capsule Constructed by a MII-Terpyridine Interaction: Cage Structure, Inclusion Properties and Drug Release

Jun-Fang Wang,^a Li-Yuan Huang,^b Jian-Hua Bu,*^c Shao-Yong Li,^d Su Qin,^b Yao-Wei Xu,*^b Jun-Min Liu,*^b Cheng-Yong Su^b Page S3----Materials and Instrumentation; Computational method.

- Page S3---Ligand Synthesis.
- Page S4---Self-assembly of cages.
- Page S6---Figure S1 ¹H NMR spectra of (a) ligand L1, (b) $Cd_4(L1)_2(PF_6)_8$, (c) $Cd_4(L1)_2(OTf)_8$, and (d) $Zn_4(L1)_2(OTf)_8$.
- Page S7---Figure S2 ¹³C NMR spectra of (a) $Cd_4(L1)_2(PF_6)_8$ and (b) $Zn_4(L1)_2(OTf)_8$.
- Page S7---Figure S3 ¹H DOSY spectrum of Zn₄(L1)₂(OTf)₈.
- Page S8---Figure S4 ESI-MS spectrum of Cd₄(L1)₂(BF₆)₈.
- Page S9---Figure S5 ESI-MS spectrum of Zn₄(L1)₂(OTf)₈.
- Page S10---Figure S6 AFM image of Zn₄(L1)₂(OTf)₈ on mica surface.
- Page S10---Figure S7 ¹H NMR study of (a) free $Cd_4(L1)_2(PF_6)_8$, (b) mercaptopurine@ $Cd_4(L1)_2(PF_6)_8$, and (c) free mercaptopurine.
- Page S11---Figure S8 ¹H DOSY spectrum of mercaptopurine@ $Cd_4(L1)_2(PF_6)_8$.
- Page S16---Figure S9 ESI-MS study of mercaptopurine@Zn₄(L1)₂(OTf)₈.
- Page S21---Figure S10 ESI-MS study of mercaptopurine@Cd4(L1)2(PF6)8.
- **Page S22---**Figure S11 ¹H NMR spectra of the mixture of 25,26,27,28-tetrabutoxycalix[4]arene, mercaptopurine, and Zn(phenyl-tpy)₂ (CF₃SO₃)₂.
- Page S22---Figure S12 ¹H NMR of mercaptopurine@Zn₄L₂ cages.
- Page S23---Table S1 Cartesian coordinates of Zn₄L₂ cages from B3LYP/6-31Gd optimization.
- Page S30----Table S2 Cartesian coordinates of mercaptopurine@Zn₄L₂ cages from B3LYP/6-31Gd optimization.
- **Page S37---**Table S3 Energies of Zn_4L_2 cages, mercaptopurine, and mercaptopurine @ Zn_4L_2 obtained from computational study (B3LYP/6-31Gd).

Materials and Instrumentation

¹H NMR, ¹³C NMR, and DOSY spectra were measured on a Bruker AVANCE

400 MHz instrument. HRESI-TOF mass spectra were measured on Bruker maXis 4G. The data analyses of ESI-TOF mass spectra were processed on Bruker Data Analysis software and the simulations were performed on Bruker Isotope Pattern software. The absorption spectra were observed with a Shimadzu UV-3600 spectrometer and fluorescence spectra were measured with an Edinburgh Instruments Ltd FLS980 spectrometer. All chemicals are of reagent grade quality obtained from commercial sources and without further purification.

Computational method

Geometry optimization of $Zn_4(L1)_2$ cage and mercaptopurine@ $Zn_4(L1)_2$ in acetonitrile was executed at the level of B3LYP/6-31Gd with Gaussian 09.^[1] Solvent effect was taken into account by using the polarizable continuum model (PCM). The complex stabilization energy (E_s) was obtained by subtracting the respective energy of cage and guest from the one of complex: E_s = E (complex) – [E (cage) + E (guest)].

Ligand Synthesis

cone-5,11,17,23-Tetra{4-(2,20:60,200-terpyridyl)-phenyl}-25,26,27,28tetrabutoxycalix[4]arene (L1)

Scheme S1 The synthesis of L1

The synthesis process of L1 was according to our previous publication^[2]. A mixture of K₃PO₄ (1.56 g, 0.68 mmol), Pd(PPh₃)₄ (139 mg, 12.0 μ mol), cone-5,11,17,23-tetrabromo-25,26,27,28-tetrabutoxycalix[4]arene **1**^[3] (1.02 g, 1.0 mmol), and 4'-{4-(neopentylglycolatoboron) phenyl-2,20:60,200-terpyridine **2**^[4] (2.86 g, 6.79 mmol) in degassed DMF (100 mL) was stirred under argon at 100 °C for 12 h. The reaction mixture was diluted with CHCl₃ (800 mL), and the resulting solution was washed with water (2×200 mL). The organic layer was dried with Na₂SO₄, the solvent was evaporated, and the residue was purified via dissolution in methanol (4×100 mL), leading to precipitation of the crude product as a yellow solid. After column chromatography (basic Al₂O₃; eluent: CH_2Cl_2 to CH_2Cl_2 /acetone 5:1) followed by recrystallization from CH₂Cl₂/methanol 939 mg (0.5 mmol, 50%) analytically pure L1 was obtained as colorless powder. ¹H NMR (400 MHz, 298 K, THF- d_8 , ppm): δ 8.61 (bs, 8H), 8.46 (d, J = 4.6 Hz, 8H,), 8.43 (d, J = 8.1 Hz, 8H,), 7.70 (dd, J = 8.1 Hz, J = 7.6 Hz, 8H), 7.69 (d, J = 7.8 Hz, 8H), 7.40 (d, J = 7.8 Hz 8H), 7.21 (bs, 8H), 7.15 (dd, J = 7.6 Hz, J = 4.6 Hz, 8H), 4.70 (d, J = 13.5 Hz, 4H), 4.11 (t, J = 6.8 Hz, 8H), 3.46 (d, J = 13.5 Hz, 4H), 2.12-2.05 (m, 8H), 1.66-1.56 (m, 8H), 1.11 (t, J = 7.6 Hz, 12H).¹³C NMR (100 MHz, 298 K, THF-*d*₈, ppm): δ 156.8, 156.3, 149.8, 149.6, 142.8, 137.0, 136.9, 135.4, 127.9, 127.8, 124.1, 121.3, 118.6, 76.0, 33.4, 32.1, 20.4, 14.6. ¹HNMR (400 MHz, 298 K, CDCl₃, ppm): σ 8.53 (bs, 16H), 8.41 (d, J = 7.56Hz, 8H), 8.05 (d, J = 8.32Hz, 8H), 7.67-7.7 (m, 16H), 7.31 (bs, 8H), 7.14-7.12 (m, 8H), 7.09 (bs, 8H), 4.64 (d, J = 13.4 Hz, 4H), 4.06 (t, J = 6.84 Hz, 8H), 3.40 (d, J = 13.7 Hz, 4H), 2.01 (m, J = 7.32 Hz, 8H), 1.55 (m, J = 7.84 Hz, 8H), 1.08 (t, J = 7.56 Hz, 12H). ¹³C NMR (100 MHz, 298 K, CDCl₃, ppm): *σ* 156.1, 155.2, 149.3, 148.8, 141.6, 136.3, 135.9, 134.4, 127.3, 127.0, 126.9, 123.2, 121.0, 118.2, 75.2, 32.4, 31.4, 19.5, 14.1. MS (MALDI-TOF) m/z: 1878.1 [M⁺].

Self-assembly of cages

- 1. The preparation of Zn₄(L1)₂(OTf)₈ and Cd₄(L1)₂(OTf)₈ by two methods:
- A. L1 (12 mg, 6.39 μmol) and Zn(CF₃SO₃)₂/Cd(CF₃SO₃)₂ (4.65 mg/5.27 mg, 12.79 μmol) were dissolved in THF (2 ml), respectively. By simply adding a THF solution of L1 into a THF solution of Zn(CF₃SO₃)₂/Cd(CF₃SO₃)₂, cages were precipitated as a yellow amorphous solid.
- B. To a mixture of Zn(CF₃SO₃)₂/Cd(CF₃SO₃)₂ (4.65 mg/5.27 mg, 12.79 μmol) and L1 (12 mg, 6.39 μmol) acetonitrile was added. The reaction mixture was placed in an oil bath at 80 ⁰C for 2 h and a clear solution was obtained. The cages were

obtained from diffusing hexane/THF (or ether) into the above reaction solution.

2. The preparation of $Cd_4(L1)_2(PF_6)_8$ by anion exchange:

The counter-ions could be exchanged by adding a methanol of ammonium hexafluorophosphate (PF_6^-) to acetonitrile solution of $Cd_4(L1)_2(OTf)_8$. The $Cd_4(L1)_2(PF_6)_8$ cages were obtained from diffusing hexane/THF (or ether) into the above reaction solution.

Zn₄(L1)₂(OTf)_{8:} Yield: 90 %. ¹H NMR (400 MHz, 298 K, CD₃CN, ppm): σ 8.80 (bs, 16H), 8.24-8.26 (m, 32H), 7.96-7.93 (m, 32H), 7.49-7.47 (bs, 16H) , 6.97 (bs, 16H), 6.59 (bs, 16H), 4.78(d, J = 12.9 Hz, 8H), 4.16 (t, J = 6.08 Hz, 16H), 3.70 (d, J = 13.2Hz, 8H), 2.22 (m, J = 7.32 Hz, 16H), 1.67 (m, J = 7.84 Hz, 16H), 1.19 (t, J = 7.56 Hz, 24H). ¹³C NMR (100 MHz, 298 K, CD₃CN, ppm): σ 158.08, 156.73, 150.00, 148.66, 143.64, 137.37, 134.77, 129.46, 128.16, 127.98, 123.64, 122.25, 120.45, 115.85, 114.91, 113.51, 77.03, 33.49, 30.58, 20.17, 14.70.

HRESI-MS m/z:

595.1986 ([Zn₄C₂₅₆H₂₁₆N₂₄O₈(CF₃SO₃)₁]⁷⁺calc), 595.2171 (Found);

719.3903 ([Zn₄C₂₅₆H₂₁₆N₂₄O₈(CF₃SO₃)₂]⁶⁺calc), 719.4120 (Found);

893.0589 ([Zn₄C₂₅₆H₂₁₆N₂₄O₈(CF₃SO₃)₃]⁵⁺calc), 893.0848 (Found);

1153.5618 ([Zn₄C₂₅₆H₂₁₆N₂₄O₈(CF₃SO₃)₄]⁴⁺calc), 1153.5941 (Found);

1587.7332 ([Zn₄C₂₅₆H₂₁₆N₂₄O₈(CF₃SO₃)₅]³⁺calc), 1587.7752 (Found);

2456.0706 ([Zn₄C₂₅₆H₂₁₆N₂₄O₈(CF₃SO₃)₆]²⁺calc), 2456.1407(Found).

Cd₄(L1)₂(OTf)_{8:} Yield: 86%. ¹H NMR (400 MHz, 298 K, CD₃CN, ppm): σ 8.77 (s, 16H), 8.36 (d, J = 8.0 Hz, 16H), 8.18 (d, J = 8.0 Hz, 16H), 7.93 (d, J = 8.1 Hz, 16H), 7.89 (s, 16H), 7.80 (d, J = 4.2 Hz, 16H), 6.95 (t, J = 7.6 Hz, 16H), 6.69 (t, J = 6.8 Hz, 16H), 4.76 (d, J = 12.4 Hz, 8H), 4.14 (t, J = 7.6 Hz, 16H), 3.68 (d, J = 12.4 Hz, 8H), 2.28-2.20 (m, 16H), 1.71-1.62 (m, 16H), 1.18 (t, J = 7.6 Hz, 24H).

Cd₄(L1)₂(PF₆)₈: Yield: 80%. ¹H NMR (400 MHz, 298 K, CD₃CN, ppm): σ 8.74 (s, 16H), 8.33 (d, J = 8.0 Hz, 16H), 8.15 (d, J = 8.0 Hz, 16H), 7.94 (d, J = 8.0 Hz, 16H), 7.92 (s, 16H), 7.76 (d, J = 4.2 Hz, 16H), 6.89 (bs, 16H), 6.60 (bs, 16H), 4.76 (d, J = 12.4 Hz, 8H), 4.13 (t, J = 7.6 Hz, 16H), 3.68 (d, J = 12.4 Hz, 8H), 2.27-2.16 (m, 16H), 1.71-1.61 (m, 16H), 1.17 (t, J = 7.6 Hz, 24H). ¹³C NMR (100 MHz, 298 K, CD₃CN,

ppm): *σ* 157.91, 155.75, 150.32, 150.23, 149.42, 143.27, 140.95, 137.38, 135.11, 129.43, 128.09, 127.85, 127.71, 124.19, 122.66, 77.02, 33.50, 30.53, 20.18, 14.70. HRESI-MS m/z:

 $\begin{aligned} & 621.6152 \; ([Cd_4C_{256}H_{216}N_{24}O_8(PF_6)_1]^{7+} calc), \; 621.6106 \; (Found); \\ & 749.3785 \; ([Cd_4C_{256}H_{216}N_{24}O_8(PF_6)_2]^{6+} calc), \; 749.3725 \; (Found); \\ & 928.2472 \; ([Cd_4C_{256}H_{216}N_{24}O_8(PF_6)_3]^{5+} calc), \; 928.2389 \; (Found); \\ & 1196.5502 \; ([Cd_4C_{256}H_{216}N_{24}O_8(PF_6)_4]^{4+} calc), \; 1196.5390 \; (Found); \\ & 1643.7218 \; ([Cd_4C_{256}H_{216}N_{24}O_8(PF_6)_5]^{3+} calc), \; 1643.7033 \; (Found); \\ & 2538.0605 \; ([Cd_4C_{256}H_{216}N_{24}O_8(PF_6)_6]^{2+} calc), \; 2538.0354 \; (Found). \end{aligned}$

Figure S1¹H NMR spectra (400 MHz, 298 K) of (a) ligand L1 (CDCl₃), (b) $Cd_4(L1)_2(PF_6)_8$ MOC (CD₃CN), (c) $Cd_4(L1)_2(OTf)_8$ MOC (CD₃CN), and (d) $Zn_4(L1)_2(OTf)_8$ MOC (CD₃CN).

Figure S2 ¹³C NMR spectra (100 MHz, CD₃CN, 298 K) of (a) $Cd_4(L1)_2(PF_6)_8$ MOC and (b) $Zn_4(L1)_2(OTf)_8$ MOC.

Figure S3 ¹H DOSY spectrum (400 MHz, CD_3CN , 298 K) of $Zn_4(L1)_2(OTf)_8$ MOC.

Figure S4 ESI-MS spectrum of $Cd_4(L1)_2(BF_6)_8$ MOC and the isotope pattern of (a) 7⁺, (b) 6⁺, (c) 5⁺, (d) 4⁺, (e) 3⁺ and (f) 2⁺ peak with the corresponding simulated isotope pattern.

Figure S5 ESI-MS spectrum of $Zn_4(L1)_2(OTf)_8$ MOC and the isotope pattern of (a) 7⁺, (b) 6⁺, (c) 5⁺, (d) 4⁺, (e) 3⁺ and (f) 2⁺ peak with the corresponding simulated isotope pattern.

Figure S6 AFM image of Zn₄(L1)₂(OTf)₈ MOC on mica surface.

Figure S7 ¹H NMR (400 MHz, 298 K) (CD₃CN : D₂O = 2:1, v/v) study of (a) free $Cd_4(L1)_2(PF_6)_8$ MOC, (b) mercaptopurine@ $Cd_4(L1)_2(PF_6)_8$ MOC system at RT, and (c) free mercaptopurine.

Figure S8 a) ¹H DOSY spectrum (400 MHz, 298 K) and b) integration of the guest peaks in ¹H DOSY spectrum of mercaptopurine@Cd₄(L1)₂(PF₆)₈ MOC system at RT in the solvent mixture of CD₃CN and D₂O (2:1 v/v). Red star: H Peaks from mercaptopurine; Black triangle: H Peaks from bridging methylene groups in calixarene.

Figure S9 ESI-MS study of mercaptopurine $(2n_4(L1)_2(OTf)_8)$ MOC. Rhombus, arrow, triangle, quadrangle and pentagram represent 7+, 6+, 5+, 4+, and 3+ peaks, respectively. Red, orange, gold, forestgreen, prasinous, skyblue, purple and fuchsia represent blank $2n_4(L1)_2(OTf)_8$ [(a), (d), (i), (q) and (y)], 1(mercaptopurine) $(2n_4(L1)_2(OTf)_8)$ [(b), (e), (j), (r) and (z)], 2(mercaptopurine) $(2n_4(L1)_2(OTf)_8)$ [(c), (f), (k), (s), and (za)], 3(mercaptopurine) $(2n_4(L1)_2(OTf)_8)$ [(g), (l), (t), and (zb)], 4(mercaptopurine) $(2n_4(L1)_2(OTf)_8)$ [(h), (m), (u), and (zc)], 5(mercaptopurine) $(2n_4(L1)_2(OTf)_8)$ [(n), (v), and (zd)], 6(mercaptopurine) $(2n_4(L1)_2(OTf)_8)$ [(o), (w), and (ze)], and 7(mercaptopurine) $(2n_4(L1)_2(OTf)_8)$ [(p) and (x)], respectively.

Figure S10 ESI-MS study of mercaptopurine@Cd₄(L1)₂(PF₆)₈ MOC. Rhombus, arrow, triangle, quadrangle and pentagram represent 7+, 6+, 5+, 4+, and 3+ peaks, respectively. Red, orange, gold, forestgreen, prasinous, skyblue, purple and fuchsia represent blank Cd₄(L1)₂(PF₆)₈ [(a), (d), (i), (p) and (x)], 1(mercaptopurine)@Cd₄(L1)₂(PF₆)₈ [(b), (e), (j), (q) and (y)], 2(mercaptopurine)@ Cd₄(L1)₂(PF₆)₈ [(c), (f), (k), (r), and (z)], 3(mercaptopurine)@Cd₄(L1)₂(PF₆)₈ [(g), (l), (s), and (za)], 4(mercaptopurine)@Cd₄(L1)₂(PF₆)₈ [(h), (m), (t), and (zb)], 5(mercaptopurine)@ Cd₄(L1)₂(PF₆)₈ [(m), (u), and (zc)], 6(mercaptopurine)@Cd₄(L1)₂(PF₆)₈ [(o) and (v)], and 7(mercaptopurine)@Cd₄(L1)₂(PF₆)₈ [(w)], respectively.

Figure S11 ¹H NMR spectra (400 MHz, 298 K) of a) the mixture, b) 25,26,27,28-tetrabutoxycalix[4]arene, c) mercaptopurine, and d) $Zn(phenyl-tpy)_2(CF_3SO_3)_2$ in CD₃CN and D₂O (v:v = 2:1).

Figure S 12 ¹H NMR of mercaptopurine $@Zn_4L_2$ cages. Red star: H Peaks from mercaptopurine; Black triangle: H Peaks from bridging methylene groups in calixarene.

atom	х	у	z	atom	X	у	z
C(1)	1.015	6.184	-8.789	C(41)	11.668	-2.993	1.670
C(2)	2.610	5.018	-7.551	C(42)	12.354	-3.760	0.540
C(3)	2.851	4.139	-6.373	C(43)	11.832	-3.343	-0.834
C(4)	3.626	5.467	-8.399	C(44)	12.097	3.336	-0.338
C(5)	3.302	6.300	-9.468	C(45)	10.446	2.103	3.462
N(6)	1.325	5.377	-7.762	C(46)	10.140	-3.534	-2.599
C(7)	1.975	6.671	-9.669	C(47)	12.508	-0.653	-3.505
C(8)	4.134	3.763	-5.979	C(48)	10.810	-2.524	-3.309
C(9)	3.162	2.578	-4.146	C(49)	12.466	-2.328	-1.575
C(10)	4.315	2.984	-4.828	C(50)	11.941	-1.883	-2.802
N(11)	1.752	3.745	-5.689	C(51)	14.564	1.926	-2.927
C(12)	1.900	2.962	-4.603	C(52)	14.674	3.449	-2.987
N(13)	-0.398	3.364	-4.026	C(53)	14.557	1.598	1.964
C(14)	-1.517	3.065	-3.354	C(54)	15.228	2.875	1.458
C(15)	0.632	1.410	-3.073	C(55)	14.841	-2.268	-1.516
C(16)	0.668	2.559	-3.874	C(56)	15.962	-1.432	-0.914
C(17)	-1.637	1.957	-2.515	C(57)	14.497	-2.719	2.815
C(18)	-0.541	1.106	-2.385	C(58)	14.762	-2.498	4.305
C(19)	12.114	0.228	3.731	C(59)	15.577	3.945	-4.130
C(20)	11.592	1.457	2.993	C(60)	15.691	-1.322	4.650
O(21)	13.589	-1.717	-1.064	C(61)	17.370	-1.937	-1.268
O(22)	13.307	1.304	1.302	C(62)	6.709	2.323	-5.219
C(23)	12.348	1.518	-2.132	C(63)	7.983	2.033	-4.743
O(24)	13.648	-1.704	2.222	C(64)	5.947	2.658	-2.955
C(25)	9.826	3.147	2.755	C(65)	5.667	2.642	-4.332
C(26)	10.401	3.527	1.531	C(66)	8.276	2.075	-3.368
C(27)	11.560	2.928	1.030	C(67)	7.228	2.392	-2.484
C(28)	11.548	2.469	-1.467	C(68)	0.668	9.878	3.594
C(29)	10.212	2.605	-1.855	C(69)	2.557	8.575	3.964
C(30)	9.654	1.826	-2.878	C(70)	3.057	7.212	4.290
C(31)	10.444	0.807	-3.430	C(71)	3.392	9.671	3.742
C(32)	11.769	0.603	-3.039	C(72)	2.822	10.906	3.434
C(33)	9.614	-2.576	2.945	N(73)	1.211	8.690	3.895
C(34)	10.205	-1.407	3.449	C(74)	1.436	11.015	3.355
C(35)	11.532	-1.067	3.172	C(75)	4.379	6.800	4.119
C(36)	10.356	-3.322	2.016	C(76)	3.724	4.622	4.878
C(37)	12.175	1.912	1.792	C(77)	4.733	5.459	4.366
C(38)	10.673	-3.922	-1.359	N(78)	2.110	6.366	4.724
O(39)	13.701	1.463	-1.864	C(79)	2.435	5.112	5.066
C(40)	12.293	-1.926	2.355	N(80)	0.081	4.825	5.438

Table S1. Cartesian coordinates of Zn_4L_2 cages from B3LYP/6-31Gd optimization.

atom	X	у	Z	atom	x	у	Z
C(81)	-0.967	4.178	5.961	C(121)	1.001	-10.576	-3.166
C(82)	1.526	3.148	6.373	C(122)	4.396	-6.725	-3.964
C(83)	1.316	4.316	5.635	C(123)	3.998	-4.513	-4.799
C(84)	-0.846	3.009	6.710	C(124)	4.897	-5.438	-4.240
C(85)	0.428	2.488	6.921	N(125)	2.213	-6.080	-4.685
C(86)	6.955	5.610	3.185	C(126)	2.675	-4.873	-5.038
C(87)	8.173	5.058	2.804	C(127)	-0.561	-3.662	-6.181
C(88)	6.504	3.677	4.533	C(128)	2.026	-2.806	-6.348
C(89)	6.077	4.926	4.047	C(129)	1.671	-3.977	-5.672
C(90)	8.576	3.783	3.243	C(130)	-0.294	-2.485	-6.879
C(91)	7.713	3.119	4.136	C(131)	1.026	-2.050	-6.958
C(92)	0.506	-4.410	9.453	C(132)	7.078	-5.767	-3.005
C(93)	2.365	-4.533	8.066	C(133)	8.339	-5.318	-2.625
C(94)	2.833	-4.674	6.662	C(134)	6.827	-3.848	-4.426
C(95)	3.225	-4.388	9.155	C(135)	6.281	-5.034	-3.905
C(96)	2.683	-4.247	10.432	C(136)	8.859	-4.097	-3.097
C(97)	1.299	-4.252	10.587	C(137)	8.071	-3.386	-4.022
C(98)	4.124	-4.368	6.238	C(138)	17.059	3.579	-3.975
C(99)	3.439	-4.886	3.997	C(139)	17.151	-1.535	4.233
C(100)	4.441	-4.423	4.868	C(140)	17.733	-1.823	-2.754
N(101)	1.887	-5.071	5.797	C(141)	16.560	3.175	2.167
C(102)	2.182	-5.225	4.498	C(142)	17.683	2.175	1.862
N(103)	-0.156	-5.701	4.238	N(143)	0.390	-4.392	-5.589
C(104)	-1.199	-6.194	3.560	N(144)	1.023	-4.550	8.224
C(105)	1.268	-6.304	2.399	H(145)	-0.034	6.439	-8.897
C(106)	1.067	-5.749	3.665	H(146)	4.656	5.176	-8.240
C(107)	-1.085	-6.761	2.291	H(147)	4.083	6.655	-10.132
C(108)	0.175	-6.817	1.703	H(148)	1.683	7.321	-10.486
C(109)	6.537	-3.064	5.117	H(149)	5.000	4.116	-6.522
C(110)	7.767	-2.617	4.651	H(150)	3.248	1.974	-3.252
C(111)	6.263	-4.381	3.125	H(151)	-2.354	3.742	-3.491
C(112)	5.756	-3.964	4.369	H(152)	1.490	0.752	-3.003
C(113)	8.277	-3.029	3.405	H(153)	-2.569	1.767	-1.994
C(114)	7.485	-3.916	2.652	H(154)	-0.596	0.218	-1.764
C(115)	0.365	-9.379	-3.483	H(155)	13.199	0.169	3.680
C(116)	2.393	-8.292	-3.821	H(156)	11.842	0.318	4.789
C(117)	3.045	-7.002	-4.176	H(157)	9.929	4.302	0.933
C(118)	3.101	-9.457	-3.520	H(158)	9.609	3.378	-1.388
C(119)	2.394	-10.612	-3.190	H(159)	10.001	0.137	-4.160
N(120)	1.041	-8.267	-3.807	H(160)	9.628	-0.748	4.091

atom	X	у	Z	atom	X	у	Z
H(161)	9.916	-4.207	1.568	H(201)	5.119	7.504	3.764
H(162)	10.164	-4.681	-0.772	H(202)	3.926	3.577	5.073
H(163)	13.430	-3.601	0.578	H(203)	-1.944	4.613	5.780
H(164)	12.174	-4.833	0.671	H(204)	2.529	2.775	6.545
H(165)	13.182	3.281	-0.345	H(205)	-1.730	2.532	7.118
H(166)	11.812	4.378	-0.521	H(206)	0.570	1.587	7.509
H(167)	10.036	1.781	4.415	H(207)	6.684	6.575	2.772
H(168)	13.571	-0.556	-3.291	H(208)	8.816	5.636	2.148
H(169)	12.393	-0.771	-4.589	H(209)	5.891	3.116	5.231
H(170)	10.445	-2.221	-4.284	H(210)	7.968	2.134	4.509
H(171)	15.532	1.466	-2.715	H(211)	-0.577	-4.429	9.523
H(172)	14.209	1.538	-3.891	H(212)	4.300	-4.400	9.018
H(173)	15.057	3.820	-2.027	H(213)	3.337	-4.137	11.290
H(174)	13.669	3.870	-3.114	H(214)	0.837	-4.143	11.562
H(175)	15.177	0.720	1.773	H(215)	4.871	-4.059	6.956
H(176)	14.397	1.674	3.046	H(216)	3.621	-4.930	2.931
H(177)	15.392	2.787	0.377	H(217)	-2.165	-6.137	4.049
H(178)	14.543	3.718	1.616	H(218)	2.261	-6.359	1.970
H(179)	14.919	-3.318	-1.197	H(219)	-1.964	-7.150	1.790
H(180)	14.869	-2.254	-2.614	H(220)	0.313	-7.260	0.722
H(181)	15.832	-1.432	0.175	H(221)	6.180	-2.687	6.070
H(182)	15.838	-0.393	-1.245	H(222)	8.347	-1.949	5.279
H(183)	15.425	-2.686	2.237	H(223)	5.710	-5.091	2.519
H(184)	14.043	-3.705	2.667	H(224)	7.821	-4.251	1.676
H(185)	13.798	-2.380	4.817	H(225)	-0.717	-9.300	-3.485
H(186)	15.202	-3.428	4.694	H(226)	4.183	-9.473	-3.554
H(187)	15.483	5.037	-4.190	H(227)	2.929	-11.527	-2.957
H(188)	15.200	3.555	-5.086	H(228)	0.415	-11.452	-2.912
H(189)	15.310	-0.404	4.187	H(229)	5.043	-7.489	-3.556
H(190)	15.650	-1.156	5.734	H(230)	4.315	-3.500	-5.002
H(191)	17.477	-2.981	-0.942	H(231)	-1.578	-4.031	-6.091
H(192)	18.095	-1.360	-0.679	H(232)	3.061	-2.496	-6.423
H(193)	6.519	2.283	-6.288	H(233)	-1.102	-1.934	-7.347
H(194)	8.773	1.799	-5.451	H(234)	1.280	-1.141	-7.492
H(195)	5.165	2.914	-2.245	H(235)	6.709	-6.686	-2.562
H(196)	7.417	2.418	-1.415	H(236)	8.917	-5.923	-1.934
H(197)	-0.416	9.912	3.549	H(237)	6.276	-3.259	-5.151
H(198)	4.468	9.573	3.818	H(238)	8.412	-2.435	-4.411
H(199)	3.457	11.769	3.262	H(239)	17.656	4.022	-4.780
H(200)	0.953	11.956	3.117	H(240)	17.222	2.496	-4.003

atom	X	у	Z	atom	X	у	Z
H(241)	17.456	3.950	-3.022	C(281)	-0.166	-0.140	4.440
H(242)	17.771	-0.683	4.531	N(282)	-0.020	-2.672	5.603
H(243)	17.255	-1.651	3.147	C(283)	1.063	-0.674	4.818
H(244)	17.568	-2.434	4.704	C(284)	-3.692	-2.675	5.136
H(245)	18.773	-2.125	-2.926	C(285)	-4.466	-4.707	6.149
H(246)	17.623	-0.790	-3.108	C(286)	-4.764	-3.523	5.453
H(247)	17.100	-2.458	-3.383	N(287)	-2.141	-4.153	6.171
H(248)	16.887	4.179	1.867	C(288)	-3.142	-4.991	6.488
H(249)	16.394	3.222	3.252	N(289)	-1.377	-6.409	7.286
H(250)	17.449	1.167	2.224	C(290)	-0.901	-7.494	7.913
H(251)	18.621	2.484	2.338	C(291)	-3.608	-7.138	7.763
H(252)	17.865	2.106	0.782	C(292)	-2.714	-6.224	7.203
C(253)	1.503	-4.899	-1.744	C(293)	-1.730	-8.453	8.489
C(254)	-0.757	-4.516	-2.039	C(294)	-3.109	-8.266	8.412
C(255)	-1.979	-4.866	-2.811	C(295)	-6.516	-1.824	4.902
C(256)	-0.760	-3.572	-1.008	C(296)	-7.771	-1.475	4.421
C(257)	0.428	-3.291	-0.339	C(297)	-7.089	-4.154	4.708
N(258)	0.369	-5.165	-2.405	C(298)	-6.138	-3.172	5.034
C(259)	1.586	-3.970	-0.709	C(299)	-8.348	-3.801	4.230
C(260)	-3.243	-4.351	-2.530	C(300)	-8.713	-2.454	4.054
C(261)	-4.111	-5.623	-4.370	C(301)	1.460	5.902	1.465
C(262)	-4.346	-4.733	-3.309	C(302)	-0.819	5.556	1.632
N(263)	-1.788	-5.720	-3.826	C(303)	-2.035	5.723	2.470
C(264)	-2.821	-6.102	-4.597	C(304)	-0.865	5.037	0.336
N(265)	-1.154	-7.313	-5.830	C(305)	0.311	4.959	-0.407
C(266)	-0.742	-8.136	-6.805	N(306)	0.336	5.984	2.187
C(267)	-3.416	-7.615	-6.553	C(307)	1.500	5.399	0.166
C(268)	-2.471	-7.043	-5.698	C(308)	-3.281	5.185	2.148
C(269)	-1.623	-8.737	-7.699	C(309)	-4.181	6.252	4.103
C(270)	-2.984	-8.472	-7.564	C(310)	-4.387	5.438	2.975
C(271)	-6.100	-3.954	-1.693	N(311)	-1.861	6.453	3.580
C(272)	-7.383	-3.500	-1.409	C(312)	-2.902	6.739	4.378
C(273)	-6.641	-4.010	-4.041	N(313)	-1.248	7.817	5.747
C(274)	-5.703	-4.224	-3.015	C(314)	-0.854	8.567	6.785
C(275)	-7.921	-3.551	-3.753	C(315)	-3.528	8.129	6.411
C(276)	-8.326	-3.291	-2.431	C(316)	-2.567	7.590	5.554
C(277)	1.082	-1.941	5.397	C(317)	-1.753	9.137	7.683
C(278)	-1.213	-2.152	5.245	C(318)	-3.114	8.912	7.487
C(279)	-2.396	-3.009	5.522	C(319)	-6.120	4.633	1.344
C(280)	-1.321	-0.886	4.664	C(320)	-7.375	4.105	1.057

atom	X	у	Z	atom	x	у	Z
C(321)	-6.615	4.526	3.699	C(361)	-12.378	-1.247	2.158
C(322)	-5.716	4.862	2.671	C(362)	-10.605	3.246	-2.757
C(323)	-7.869	3.999	3.409	O(363)	-13.759	-1.995	-1.483
C(324)	-8.284	3.784	2.081	C(364)	-12.353	2.601	1.382
C(325)	0.349	2.073	-8.554	C(365)	-11.668	3.345	0.396
C(326)	-1.799	2.356	-7.732	C(366)	-12.312	3.725	-0.937
C(327)	-2.684	3.192	-6.876	C(367)	-11.770	2.872	-2.081
C(328)	-2.264	1.273	-8.481	C(368)	-12.313	-3.318	0.647
C(329)	-1.369	0.581	-9.296	C(369)	-10.623	-0.841	3.761
N(330)	-0.505	2.744	-7.774	C(370)	-10.023	2.426	-3.736
C(331)	-0.037	0.987	-9.339	C(371)	-12.397	-0.588	-3.665
C(332)	-4.012	2.890	-6.580	C(372)	-10.653	1.212	-4.045
C(333)	-4.159	4.972	-5.386	C(373)	-12.375	1.646	-2.419
C(334)	-4.772	3.775	-5.795	C(374)	-11.816	0.796	-3.391
N(335)	-2.112	4.310	-6.407	C(375)	-14.614	-2.765	-2.357
C(336)	-2.824	5.208	-5.710	C(376)	-14.788	-4.212	-1.900
N(337)	-0.737	6.380	-5.552	C(377)	-14.758	-0.907	2.225
C(338)	0.023	7.437	-5.239	C(378)	-15.422	-2.282	2.167
C(339)	-2.665	7.549	-4.742	C(379)	-14.753	1.630	-2.329
C(340)	-2.066	6.423	-5.309	C(380)	-15.879	1.125	-1.440
C(341)	-0.501	8.595	-4.669	C(381)	-14.519	3.588	1.530
C(342)	-1.870	8.648	-4.418	C(382)	-14.851	3.813	3.004
C(343)	-12.295	1.013	3.393	C(383)	-16.732	-2.354	2.971
C(344)	-11.783	-0.401	3.119	C(384)	-15.687	-5.039	-2.836
O(345)	-13.501	1.240	-1.735	C(385)	-15.863	2.820	3.591
O(346)	-13.515	-0.843	1.494	C(386)	-17.267	1.476	-1.989
C(347)	-12.405	-2.192	-1.655	C(387)	-6.512	2.104	-5.123
O(348)	-13.716	2.406	1.289	C(388)	-7.768	1.786	-4.622
C(349)	-10.007	-2.061	3.442	C(389)	-7.108	4.439	-5.125
C(350)	-10.604	-2.856	2.453	C(390)	-6.148	3.440	-5.366
C(351)	-11.775	-2.468	1.794	C(391)	-8.370	4.116	-4.636
C(352)	-11.687	-2.920	-0.686	C(392)	-8.722	2.785	-4.355
C(353)	-10.354	-3.247	-0.950	C(393)	-17.865	-1.475	2.427
C(354)	-9.708	-2.845	-2.127	C(394)	-17.159	-4.607	-2.850
C(355)	-10.412	-2.004	-3.002	C(395)	-16.161	3.078	5.071
C(356)	-11.741	-1.641	-2.772	C(396)	-18.402	0.982	-1.086
C(357)	-9.650	3.282	1.785	H(397)	2.385	-5.447	-2.057
C(358)	-10.311	2.399	2.652	H(398)	-1.669	-3.053	-0.730
C(359)	-11.647	2.035	2.463	H(399)	0.444	-2.554	0.458
C(360)	-10.337	3.697	0.635	H(400)	2.535	-3.790	-0.215

atom	X	у	Z	atom	X	у	Z
H(401)	-3.379	-3.644	-1.722	H(441)	-1.714	-0.256	-9.894
H(402)	-4.935	-5.950	-4.989	H(442)	0.690	0.486	-9.968
H(403)	0.326	-8.316	-6.860	H(443)	-4.460	1.977	-6.950
H(404)	-4.472	-7.407	-6.436	H(444)	-4.703	5.674	-4.768
H(405)	-1.247	-9.397	-8.472	H(445)	1.082	7.350	-5.456
H(406)	-3.706	-8.925	-8.235	H(446)	-3.733	7.581	-4.566
H(407)	-5.410	-4.126	-0.873	H(447)	0.152	9.428	-4.434
H(408)	-7.650	-3.296	-0.377	H(448)	-2.320	9.532	-3.979
H(409)	-6.365	-4.187	-5.076	H(449)	-13.374	1.071	3.278
H(410)	-8.627	-3.418	-4.568	H(450)	-12.060	1.270	4.432
H(411)	2.022	-2.384	5.706	H(451)	-10.132	-3.790	2.165
H(412)	-2.286	-0.474	4.397	H(452)	-9.824	-3.874	-0.240
H(413)	-0.232	0.842	3.987	H(453)	-9.904	-1.598	-3.872
H(414)	1.990	-0.130	4.673	H(454)	-9.775	1.989	3.503
H(415)	-3.872	-1.779	4.558	H(455)	-9.836	4.343	-0.079
H(416)	-5.261	-5.390	6.419	H(456)	-10.120	4.182	-2.493
H(417)	0.179	-7.590	7.955	H(457)	-13.392	3.609	-0.874
H(418)	-4.677	-6.974	7.708	H(458)	-12.105	4.779	-1.153
H(419)	-1.300	-9.315	8.986	H(459)	-13.393	-3.216	0.579
H(420)	-3.791	-8.985	8.853	H(460)	-12.083	-4.369	0.854
H(421)	-5.825	-1.033	5.177	H(461)	-10.189	-0.210	4.531
H(422)	-8.006	-0.423	4.293	H(462)	-13.473	-0.580	-3.503
H(423)	-6.834	-5.207	4.787	H(463)	-12.222	-0.842	-4.717
H(424)	-9.054	-4.588	3.982	H(464)	-10.231	0.577	-4.818
H(425)	2.368	6.257	1.939	H(465)	-15.567	-2.230	-2.350
H(426)	-1.803	4.718	-0.102	H(466)	-14.219	-2.741	-3.381
H(427)	0.290	4.573	-1.420	H(467)	-15.205	-4.222	-0.884
H(428)	2.440	5.364	-0.373	H(468)	-13.798	-4.684	-1.843
H(429)	-3.392	4.545	1.283	H(469)	-15.387	-0.142	1.763
H(430)	-5.013	6.495	4.751	H(470)	-14.592	-0.624	3.273
H(431)	0.216	8.715	6.892	H(471)	-15.616	-2.543	1.119
H(432)	-4.584	7.953	6.244	H(472)	-14.721	-3.029	2.561
H(433)	-1.390	9.739	8.508	H(473)	-14.790	2.725	-2.429
H(434)	-3.849	9.341	8.160	H(474)	-14.831	1.206	-3.341
H(435)	-5.459	4.891	0.522	H(475)	-15.749	1.551	-0.438
H(436)	-7.648	3.935	0.020	H(476)	-15.775	0.038	-1.335
H(437)	-6.328	4.662	4.737	H(477)	-15.435	3.436	0.949
H(438)	-8.546	3.774	4.227	H(478)	-14.002	4.465	1.126
H(439)	1.376	2.423	-8.556	H(479)	-13.921	3.802	3.590
H(440)	-3.307	0.981	-8.452	H(480)	-15.256	4.831	3.092

atom	х	у	Z
H(481)	-17.067	-3.399	2.984
H(482)	-16.530	-2.088	4.019
H(483)	-15.628	-6.090	-2.525
H(484)	-15.281	-5.001	-3.857
H(485)	-15.492	1.796	3.465
H(486)	-16.795	2.880	3.012
H(487)	-17.384	1.043	-2.993
H(488)	-17.347	2.565	-2.113
H(489)	-5.788	1.308	-5.264
H(490)	-7.994	0.750	-4.388
H(491)	-6.878	5.479	-5.339
H(492)	-9.094	4.910	-4.476
H(493)	-18.789	-1.634	2.995
H(494)	-18.074	-1.709	1.376
H(495)	-17.624	-0.407	2.488
H(496)	-17.756	-5.277	-3.479
H(497)	-17.287	-3.591	-3.241
H(498)	-17.585	-4.630	-1.840
H(499)	-16.895	2.364	5.460
H(500)	-16.564	4.088	5.223
H(501)	-15.252	2.989	5.679
H(502)	-19.383	1.242	-1.500
H(503)	-18.332	1.428	-0.086
H(504)	-18.367	-0.108	-0.966
Zn(505)	0.141	-6.403	-4.391
Zn(506)	-0.143	-4.865	6.441
Zn(507)	-0.050	4.550	-6.442
Zn(508)	0.084	6.900	4.324

optimiza		1	1		T		1	1
atom	х	у	z		atom	х	у	z
C(1)	-0.723	-8.455	-8.869		C(41)	-10.947	3.051	1.040
C(2)	-2.390	-7.464	-7.544		C(42)	-11.515	3.618	-0.268
C(3)	-2.672	-6.669	-6.318		C(43)	-10.921	3.014	-1.545
C(4)	-3.384	-7.944	-8.404		C(44)	-11.512	-3.579	0.031
C(5)	-3.021	-8.699	-9.525		C(45)	-9.968	-1.774	3.675
N(6)	-1.069	-7.727	-7.784		C(46)	-9.310	3.100	-3.404
C(7)	-1.669	-8.959	-9.765		C(47)	-11.404	-0.128	-3.755
C(8)	-3.937	-6.180	-5.955		C(48)	-9.797	1.853	-3.855
C(9)	-2.946	-5.288	-3.953		C(49)	-11.459	1.830	-2.102
C(10)	-4.096	-5.458	-4.750		C(50)	-10.861	1.201	-3.220
N(11)	-1.585	-6.450	-5.535		C(51)	-13.799	-2.393	-2.940
C(12)	-1.717	-5.801	-4.355		C(52)	-14.133	-3.864	-2.720
N(13)	0.661	-6.103	-4.126		C(53)	-13.974	-1.543	1.164
C(14)	1.804	-6.077	-3.404		C(54)	-14.388	-2.372	2.378
C(15)	-0.513	-5.242	-2.207		C(55)	-13.894	1.782	-2.119
C(16)	-0.492	-5.693	-3.535		C(56)	-15.033	1.112	-1.372
C(17)	1.856	-5.645	-2.078		C(57)	-13.946	2.985	1.997
C(18)	0.673	-5.213	-1.473		C(58)	-14.432	2.819	3.433
C(19)	-11.621	0.170	3.527		C(59)	-15.060	-4.433	-3.821
C(20)	-11.018	-1.139	3.005		C(60)	-15.399	1.640	3.667
O(21)	-12.604	1.279	-1.545		C(61)	-16.425	1.614	-1.820
O(22)	-12.552	-1.068	1.190		C(62)	-6.307	-4.288	-5.162
C(23)	-11.529	-2.063	-2.052		C(63)	-7.445	-3.647	-4.669
O(24)	-13.016	1.874	1.580		C(64)	-5.644	-4.813	-2.900
C(25)	-9.425	-2.997	3.222		C(65)	-5.370	-4.871	-4.285
C(26)	-9.962	-3.559	2.045		C(66)	-7.708	-3.567	-3.282
C(27)	-11.006	-2.954	1.335		C(67)	-6.781	-4.183	-2.412
C(28)	-10.862	-2.999	-1.225		C(68)	0.002	-9.009	4.398
C(29)	-9.584	-3.426	-1.612		C(69)	-2.122	-8.094	4.761
C(30)	-8.939	-2.921	-2.762		C(70)	-2.878	-6.980	5.383
C(31)	-9.547	-1.832	-3.424		C(71)	-2.730	-9.187	4.135
C(32)	-10.818	-1.366	-3.065		C(72)	-1.930	-10.220	3.635
C(33)	-9.165	3.027	2.729]	N(73)	-0.765	-8.013	4.890
C(34)	-9.810	1.937	3.350		C(74)	-0.540	-10.131	3.766
C(35)	-11.025	1.419	2.880]	C(75)	-4.181	-6.601	5.052
C(36)	-9.709	3.501	1.517]	C(76)	-4.030	-4.855	6.715
C(37)	-11.549	-1.749	1.842]	C(77)	-4.769	-5.472	5.673
C(38)	-9.864	3.639	-2.221]	N(78)	-2.161	-6.287	6.295
O(39)	-12.889	-1.858	-1.869		C(79)	-2.729	-5.277	6.991
C(40)	-11.667	2.103	1.818		N(80)	-0.494	-4.905	7.788

Table S2. Cartesian coordinates of mercaptopurine@ Zn_4L_2 cages from B3LYP/6-31Gd optimization.

atom	x	у	Z	atom	x	у	Z
C(81)	0.404	-4.418	8.672	C(121)	-1.577	11.442	-4.859
C(82)	-2.270	-3.941	9.101	C(122)	-4.584	7.231	-5.660
C(83)	-1.822	-4.667	7.993	C(123)	-4.030	5.228	-6.880
C(84)	0.025	-3.687	9.800	C(124)	-4.945	5.916	-6.046
C(85)	-1.336	-3.449	10.019	N(125)	-2.401	6.956	-6.607
C(86)	-7.016	-5.658	4.519	C(126)	-2.768	5.764	-7.126
C(87)	-8.126	-5.059	3.926	C(127)	0.587	4.997	-8.341
C(88)	-6.233	-3.490	5.234	C(128)	-1.968	4.175	-8.931
C(89)	-6.029	-4.886	5.171	C(129)	-1.706	5.104	-7.917
C(90)	-8.305	-3.655	3.937	C(130)	0.400	4.072	-9.371
C(91)	-7.337	-2.895	4.632	C(131)	-0.901	3.659	-9.673
C(92)	-0.510	4.912	9.841	C(132)	-7.198	5.926	-4.870
C(93)	-2.408	5.113	8.481	C(133)	-8.228	5.246	-4.219
C(94)	-2.902	5.438	7.120	C(134)	-6.212	3.820	-5.497
C(95)	-3.246	4.821	9.561	C(135)	-6.143	5.232	-5.503
C(96)	-2.681	4.572	10.818	C(136)	-8.264	3.832	-4.166
C(97)	-1.290	4.614	10.961	C(137)	-7.243	3.141	-4.856
C(98)	-4.155	5.085	6.609	C(138)	-16.466	-3.808	-3.854
C(99)	-3.550	6.161	4.536	C(139)	-16.779	1.825	3.013
C(100)	-4.487	5.395	5.268	C(140)	-16.805	1.242	-3.264
N(101)	-1.992	6.070	6.346	C(141)	-15.897	-2.717	2.366
C(102)	-2.312	6.473	5.098	C(142)	-16.328	-3.662	1.232
N(103)	0.012	7.046	4.937	N(143)	-0.439	5.514	-7.632
C(104)	1.052	7.717	4.400	N(144)	-1.051	5.161	8.629
C(105)	-1.456	8.085	3.334	H(145)	0.336	-8.636	-9.012
C(106)	-1.232	7.219	4.411	H(146)	-4.431	-7.753	-8.204
C(107)	0.901	8.600	3.328	H(147)	-3.783	-9.082	-10.194
C(108)	-0.376	8.787	2.790	H(148)	-1.352	-9.542	-10.621
C(109)	-6.831	4.451	5.378	H(149)	-4.799	-6.367	-6.582
C(110)	-7.939	3.868	4.765	H(150)	-3.024	-4.711	-3.044
C(111)	-5.770	4.694	3.222	H(151)	2.698	-6.413	-3.910
C(112)	-5.711	4.866	4.624	H(152)	-1.440	-4.933	-1.744
C(113)	-7.990	3.675	3.365	H(153)	2.791	-5.630	-1.531
C(114)	-6.883	4.119	2.612	H(154)	0.676	-4.867	-0.446
C(115)	-0.829	10.305	-5.178	H(155)	-12.695	0.164	3.349
C(116)	-2.771	9.041	-5.537	H(156)	-11.459	0.217	4.610
C(117)	-3.307	7.721	-5.957	H(157)	-9.545	-4.486	1.661
C(118)	-3.576	10.140	-5.227	H(158)	-9.129	-4.239	-1.055
C(119)	-2.972	11.357	-4.887	H(159)	-9.023	-1.345	-4.242
N(120)	-1.406	9.130	-5.514	 H(160)	-9.393	1.511	4.261

atom	x	у	Z	atom	x	у	z
H(161)	-9.208	4.307	0.988	H(201)	-4.711	-7.112	4.258
H(162)	-9.487	4.583	-1.835	H(202)	-4.465	-4.031	7.265
H(163)	-12.593	3.460	-0.279	H(203)	1.445	-4.638	8.470
H(164)	-11.343	4.701	-0.286	H(204)	-3.330	-3.796	9.271
H(165)	-12.592	-3.462	-0.049	H(205)	0.775	-3.332	10.496
H(166)	-11.308	-4.655	0.068	H(206)	-1.666	-2.909	10.898
H(167)	-9.610	-1.345	4.607	H(207)	-6.940	-6.741	4.506
H(168)	-12.487	-0.136	-3.642	H(208)	-8.882	-5.689	3.471
H(169)	-11.187	-0.182	-4.828	H(209)	-5.487	-2.849	5.693
H(170)	-9.396	1.423	-4.768	H(210)	-7.430	-1.815	4.661
H(171)	-14.679	-1.755	-2.866	H(211)	0.570	4.966	9.907
H(172)	-13.324	-2.240	-3.916	H(212)	-4.322	4.825	9.441
H(173)	-14.616	-3.983	-1.741	H(213)	-3.316	4.365	11.671
H(174)	-13.201	-4.445	-2.697	H(214)	-0.820	4.434	11.920
H(175)	-14.115	-2.074	0.224	H(215)	-4.840	4.509	7.217
H(176)	-14.528	-0.604	1.121	H(216)	-3.779	6.476	3.528
H(177)	-13.809	-3.305	2.421	H(217)	2.020	7.547	4.853
H(178)	-14.159	-1.814	3.296	H(218)	-2.457	8.241	2.952
H(179)	-13.924	2.873	-2.002	H(219)	1.758	9.137	2.940
H(180)	-13.905	1.554	-3.191	H(220)	-0.534	9.484	1.975
H(181)	-14.888	1.298	-0.303	H(221)	-6.864	4.623	6.449
H(182)	-14.957	0.028	-1.512	H(222)	-8.798	3.598	5.370
H(183)	-14.764	2.924	1.279	H(223)	-4.928	4.957	2.592
H(184)	-13.423	3.939	1.867	H(224)	-6.873	3.973	1.538
H(185)	-13.560	2.735	4.096	H(225)	0.253	10.327	-5.179
H(186)	-14.938	3.755	3.713	H(226)	-4.655	10.067	-5.287
H(187)	-15.153	-5.513	-3.658	H(227)	-3.582	12.226	-4.665
H(188)	-14.577	-4.314	-4.802	H(228)	-1.077	12.369	-4.609
H(189)	-14.937	0.712	3.303	H(229)	-5.259	7.826	-5.060
H(190)	-15.533	1.515	4.749	H(230)	-4.288	4.261	-7.289
H(191)	-16.481	2.705	-1.694	H(231)	1.577	5.350	-8.083
H(192)	-17.173	1.193	-1.136	H(232)	-2.987	3.896	-9.171
H(193)	-6.137	-4.309	-6.234	H(233)	1.250	3.705	-9.934
H(194)	-8.156	-3.224	-5.371	H(234)	-1.087	2.966	-10.486
H(195)	-4.971	-5.296	-2.197	H(235)	-7.241	7.010	-4.903
H(196)	-6.946	-4.144	-1.342	H(236)	-9.035	5.817	-3.774
H(197)	1.072	-8.902	4.530	H(237)	-5.424	3.230	-5.952
H(198)	-3.810	-9.255	4.075	H(238)	-7.231	2.056	-4.850
H(199)	-2.386	-11.087	3.172	H(239)	-17.094	-4.309	-4.597
H(200)	0.108	-10.919	3.404	H(240)	-16.443	-2.743	-4.117

atom	x	у	Z	atom	x	у	z
H(241)	-16.964	-3.906	-2.882	C(281)	0.080	1.124	4.635
H(242)	-17.435	0.979	3.241	N(282)	-0.096	3.654	5.802
H(243)	-16.715	1.904	1.921	C(283)	-1.171	1.697	4.883
H(244)	-17.272	2.731	3.384	C(284)	3.603	3.561	5.618
H(245)	-17.827	1.564	-3.490	C(285)	4.373	5.574	6.700
H(246)	-16.762	0.156	-3.417	C(286)	4.679	4.400	5.977
H(247)	-16.147	1.715	-4.003	N(287)	2.029	5.056	6.620
H(248)	-16.144	-3.180	3.329	C(288)	3.041	5.869	7.019
H(249)	-16.482	-1.787	2.317	N(289)	1.255	7.249	7.876
H(250)	-16.205	-3.205	0.242	C(290)	0.771	8.305	8.568
H(251)	-17.383	-3.933	1.335	C(291)	3.493	7.940	8.428
H(252)	-15.746	-4.593	1.252	C(292)	2.607	7.060	7.796
C(253)	-1.950	6.261	-3.317	C(293)	1.603	9.220	9.216
C(254)	0.301	5.675	-3.482	C(294)	2.987	9.031	9.145
C(255)	1.565	5.842	-4.234	C(295)	6.411	2.670	5.501
C(256)	0.222	4.962	-2.277	C(296)	7.595	2.265	4.897
C(257)	-0.989	4.906	-1.586	C(297)	6.942	4.973	5.001
N(258)	-0.786	6.303	-4.004	C(298)	6.037	4.030	5.530
C(259)	-2.096	5.583	-2.107	C(299)	8.120	4.560	4.375
C(260)	2.761	5.241	-3.857	C(300)	8.455	3.191	4.265
C(261)	3.866	6.387	-5.661	C(301)	-1.489	-4.078	3.993
C(262)	3.954	5.496	-4.565	C(302)	0.809	-4.366	3.704
N(263)	1.505	6.658	-5.310	C(303)	2.049	-4.970	4.238
C(264)	2.631	6.956	-6.006	C(304)	0.805	-3.505	2.596
N(265)	1.123	8.285	-7.348	C(305)	-0.398	-2.909	2.209
C(266)	0.843	9.168	-8.333	N(306)	-0.333	-4.662	4.381
C(267)	3.463	8.465	-7.881	C(307)	-1.568	-3.183	2.924
C(268)	2.423	7.924	-7.117	C(308)	3.314	-4.650	3.752
C(269)	1.837	9.740	-9.131	C(309)	4.280	-6.049	5.461
C(270)	3.169	9.382	-8.898	C(310)	4.468	-5.175	4.369
C(271)	5.402	4.550	-2.757	N(311)	1.895	-5.818	5.283
C(272)	6.554	3.912	-2.305	C(312)	2.981	-6.367	5.885
C(273)	6.226	4.466	-5.025	N(313)	1.331	-7.443	7.283
C(274)	5.207	4.846	-4.126	C(314)	0.948	-8.284	8.270
C(275)	7.377	3.818	-4.574	C(315)	3.627	-8.026	7.706
C(276)	7.577	3.530	-3.203	C(316)	2.661	-7.306	6.994
C(277)	-1.209	2.964	5.468	C(317)	1.864	-9.029	9.016
C(278)	1.122	3.097	5.555	C(318)	3.226	-8.895	8.727
C(279)	2.296	3.912	5.944	C(319)	5.984	-4.568	2.476
C(280)	1.241	1.825	4.972	C(320)	7.175	-4.044	1.979

atom	x	у	z		atom	x	у	Z
C(321)	6.855	-4.407	4.729		C(361)	11.620	1.680	1.783
C(322)	5.792	-4.745	3.864		C(362)	10.140	-3.442	-2.503
C(323)	8.040	-3.864	4.227		O(363)	12.861	2.132	-1.860
C(324)	8.228	-3.654	2.838		C(364)	12.024	-2.147	1.528
C(325)	-0.682	-4.293	-8.222		C(365)	11.317	-3.045	0.687
C(326)	1.618	-4.414	-7.836		C(366)	11.894	-3.520	-0.652
C(327)	2.700	-5.150	-7.145		C(367)	11.243	-2.859	-1.870
C(328)	1.852	-3.349	-8.714		C(368)	11.347	3.608	0.132
C(329)	0.768	-2.754	-9.366		C(369)	10.285	1.526	3.789
N(330)	0.361	-4.885	-7.603		C(370)	9.501	-2.829	-3.603
C(331)	-0.523	-3.228	-9.112		C(371)	11.538	0.437	-3.882
C(332)	3.961	-4.628	-6.865]	C(372)	9.961	-1.560	-4.014
C(333)	4.558	-6.741	-5.878]	C(373)	11.745	-1.640	-2.390
C(334)	4.907	-5.392	-6.138]	C(374)	11.067	-0.945	-3.418
N(335)	2.358	-6.399	-6.759]	C(375)	13.742	2.774	-2.889
C(336)	3.282	-7.215	-6.205		C(376)	14.080	4.212	-2.508
N(337)	1.414	-8.711	-5.942		C(377)	14.012	1.267	1.063
C(338)	0.864	-9.928	-5.739		C(378)	14.465	2.384	2.000
C(339)	3.605	-9.691	-5.726		C(379)	14.178	-1.610	-2.538
C(340)	2.776	-8.585	-5.933		C(380)	15.366	-0.954	-1.858
C(341)	1.637	-11.073	-5.526		C(381)	14.331	-2.992	1.601
C(342)	3.029	-10.951	-5.523		C(382)	14.774	-3.028	3.060
C(343)	11.976	-0.323	3.343		C(383)	16.004	2.421	2.164
C(344)	11.288	0.992	2.972		C(384)	15.011	4.900	-3.534
O(345)	12.925	-1.116	-1.881		C(385)	15.705	-1.879	3.487
O(346)	12.525	1.155	0.886		C(386)	16.709	-1.444	-2.438
C(347)	11.492	2.242	-2.043		C(387)	6.270	-3.359	-5.553
O(348)	13.370	-1.874	1.305		C(388)	7.354	-2.742	-4.930
C(349)	9.598	2.710	3.453		C(389)	7.181	-5.519	-5.008
C(350)	9.960	3.374	2.262		C(390)	6.135	-4.766	-5.594
C(351)	10.958	2.876	1.418		C(391)	8.264	-4.904	-4.382
C(352)	10.738	3.040	-1.149		C(392)	8.379	-3.492	-4.303
C(353)	9.423	3.372	-1.508		C(393)	16.774	2.801	0.888
C(354)	8.843	2.931	-2.718		C(394)	16.424	4.298	-3.615
C(355)	9.555	1.976	-3.472		C(395)	16.160	-2.000	4.950
C(356)	10.852	1.581	-3.126		C(396)	17.919	-0.777	-1.764
C(357)	9.478	-3.054	2.313		H(397)	-2.785	6.785	-3.756
C(358)	10.125	-2.018	3.013		H(398)	1.093	4.462	-1.873
C(359)	11.371	-1.523	2.617		H(399)	-1.089	4.334	-0.671
C(360)	10.060	-3.497	1.108		H(400)	-3.048	5.562	-1.589

atom	x	у	z	atom	x	у	z
H(401)	2.784	4.550	-3.027	H(441)	0.932	-1.950	-10.074
H(402)	4.762	6.646	-6.209	H(442)	-1.386	-2.800	-9.607
H(403)	-0.201	9.418	-8.475	H(443)	4.194	-3.619	-7.173
H(404)	4.493	8.194	-7.689	H(444)	5.252	-7.394	-5.365
H(405)	1.573	10.446	-9.909	H(445)	-0.218	-9.978	-5.760
H(406)	3.967	9.811	-9.493	H(446)	4.683	-9.587	-5.760
H(407)	4.662	4.861	-2.026	H(447)	1.158	-12.033	-5.380
H(408)	6.656	3.688	-1.248	H(448)	3.659	-11.822	-5.381
H(409)	6.116	4.663	-6.087	H(449)	13.040	-0.272	3.117
H(410)	8.154	3.566	-5.287	H(450)	11.882	-0.468	4.425
H(411)	-2.155	3.444	5.680	H(451)	9.440	4.284	1.979
H(412)	2.209	1.377	4.776	H(452)	8.890	4.088	-0.890
H(413)	0.156	0.140	4.185	H(453)	9.088	1.533	-4.348
H(414)	-2.092	1.181	4.628	H(454)	9.652	-1.585	3.890
H(415)	3.797	2.681	5.023	H(455)	9.558	-4.259	0.519
H(416)	5.174	6.230	7.013	H(456)	9.774	-4.396	-2.132
H(417)	-0.307	8.408	8.601	H(457)	12.962	-3.314	-0.670
H(418)	4.562	7.780	8.383	H(458)	11.766	-4.606	-0.734
H(419)	1.178	10.053	9.763	H(459)	12.432	3.591	0.027
H(420)	3.663	9.716	9.643	H(460)	11.040	4.656	0.231
H(421)	5.760	1.923	5.944	H(461)	10.057	1.025	4.726
H(422)	7.838	1.209	4.865	H(462)	12.616	0.505	-3.748
H(423)	6.702	6.032	5.026	H(463)	11.329	0.536	-4.954
H(424)	8.787	5.307	3.959	H(464)	9.495	-1.070	-4.863
H(425)	-2.371	-4.329	4.563	H(465)	14.627	2.138	-2.912
H(426)	1.710	-3.285	2.039	H(466)	13.244	2.733	-3.865
H(427)	-0.420	-2.231	1.363	H(467)	14.559	4.215	-1.520
H(428)	-2.512	-2.710	2.661	H(468)	13.148	4.786	-2.420
H(429)	3.427	-3.959	2.929	H(469)	14.350	1.424	0.041
H(430)	5.142	-6.484	5.950	H(470)	14.354	0.289	1.406
H(431)	-0.117	-8.355	8.458	H(471)	14.122	3.358	1.625
H(432)	4.680	-7.925	7.474	H(472)	14.010	2.249	2.991
H(433)	1.519	-9.693	9.798	H(473)	14.213	-2.703	-2.445
H(434)	3.965	-9.459	9.285	H(474)	14.129	-1.359	-3.606
H(435)	5.203	-4.839	1.774	H(475)	15.316	-1.163	-0.783
H(436)	7.290	-3.911	0.909	H(476)	15.285	0.134	-1.969
H(437)	6.749	-4.541	5.801	H(477)	15.172	-2.792	0.933
H(438)	8.844	-3.620	4.912	H(478)	13.858	-3.937	1.312
H(439)	-1.663	-4.696	-8.006	H(479)	13.889	-3.066	3.712
H(440)	2.862	-3.019	-8.922	H(480)	15.301	-3.983	3.209

atom	x	у	z	atom	x	у	z
H(481)	16.242	3.145	2.953	H(521)	-6.664	4.762	-1.238
H(482)	16.354	1.446	2.531	N(522)	-4.731	4.135	-0.560
H(483)	15.089	5.960	-3.260	S(523)	-8.302	-0.240	0.036
H(484)	14.540	4.879	-4.528	C(524)	-6.282	-0.344	1.967
H(485)	15.198	-0.916	3.337	C(525)	-6.743	-0.828	0.739
H(486)	16.586	-1.871	2.829	N(526)	-5.954	-1.704	0.082
H(487)	16.739	-1.247	-3.519	C(527)	-4.772	-2.095	0.641
H(488)	16.782	-2.535	-2.323	N(528)	-4.257	-1.669	1.801
H(489)	5.504	-2.719	-5.974	C(529)	-5.023	-0.768	2.461
H(490)	7.399	-1.658	-4.913	N(530)	-6.765	0.548	2.903
H(491)	7.176	-6.602	-5.065	H(531)	-8.416	-1.239	-0.911
H(492)	9.060	-5.523	-3.984	H(532)	-4.194	-2.805	0.066
H(493)	17.845	2.892	1.096	H(533)	-7.658	1.031	2.873
H(494)	16.432	3.767	0.495	C(534)	-5.807	0.643	3.890
H(495)	16.659	2.051	0.095	H(535)	-5.932	1.295	4.739
H(496)	17.055	4.882	-4.292	N(536)	-4.742	-0.131	3.666
H(497)	16.419	3.267	-3.989	S(537)	5.291	0.288	-2.903
H(498)	16.909	4.298	-2.631	C(538)	4.762	-2.081	-1.491
H(499)	16.827	-1.177	5.226	C(539)	4.494	-0.714	-1.612
H(500)	16.705	-2.937	5.118	N(540)	3.618	-0.160	-0.759
H(501)	15.305	-1.983	5.637	C(541)	3.015	-0.942	0.179
H(502)	18.858	-1.147	-2.187	N(542)	3.183	-2.267	0.351
H(503)	17.936	-0.982	-0.686	C(543)	4.074	-2.829	-0.500
H(504)	17.899	0.311	-1.899	N(544)	5.601	-2.984	-2.118
Zn(505)	-0.356	7.291	-6.117	H(545)	5.065	1.502	-2.297
Zn(506)	0.063	5.765	6.827	H(546)	2.338	-0.434	0.852
Zn(507)	0.321	-6.857	-6.372	H(547)	6.255	-2.801	-2.872
Zn(508)	-0.039	-6.260	6.067	C(548)	5.399	-4.204	-1.511
S(509)	-5.470	-0.407	-2.820	H(549)	5.942	-5.085	-1.812
C(510)	-4.947	2.019	-1.458	N(550)	4.483	-4.160	-0.541
C(511)	-4.489	0.737	-1.764	S(551)	7.964	0.311	0.372
N(512)	-3.287	0.366	-1.291	C(552)	5.858	0.385	2.219
C(513)	-2.553	1.258	-0.567	C(553)	6.503	1.039	1.162
N(514)	-2.889	2.527	-0.271	N(554)	5.998	2.215	0.748
C(515)	-4.106	2.899	-0.721	C(555)	4.893	2.722	1.366
N(516)	-6.096	2.742	-1.712	N(556)	4.206	2.164	2.374
H(517)	-5.756	-1.289	-1.752	C(557)	4.710	0.982	2.792
H(518)	-1.596	0.904	-0.207	N(558)	6.061	-0.782	2.938
H(519)	-6.928	2.412	-2.185	H(559)	8.319	1.434	-0.348
C(520)	-5.914	3.992	-1.163	H(560)	4.545	3.678	0.998

atom	х	у	Z
H(561)	6.794	-1.468	2.803
C(562)	5.064	-0.844	3.890
H(563)	5.000	-1.660	4.590
N(564)	4.228	0.193	3.838
H(565)	4.146	-4.954	0.059
H(566)	3.393	0.376	4.448
H(561)	6.794	-1.468	2.803
C(562)	5.064	-0.844	3.890
H(563)	5.000	-1.660	4.590
N(564)	4.228	0.193	3.838
H(565)	4.146	-4.954	0.059
H(566)	3.393	0.376	4.448

Table S3 Energies of Zn_4L1_2 cage, mercaptopurine, and mercaptopurine@ Zn_4L1_2 cage obtainedfrom computational study (B3LYP/6-31Gd).

System	E (cage) (au)	E (mercaptopurine) (au)	E (mercaptopurine@cage) (au)	E _s # (kcal/mol)
mercaptopurine@cage complex	-18917.3776588	-810.1467574	-22157.8924983	-45.3

 ${}^{\#}E_{s}$ denotes the complex stabilization energy.

Reference:

Gaussian 09, Revision E.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria,
 G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.;
 Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A.
 F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda,
 R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven,
 T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.;
 Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.;
 Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.;

Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.;
Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.;
Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth,
G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.;
Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford
CT, 2009.

2. Liu, J.; Tonigold, M.; Bredenkötter, B.; Schröder, T.; Mattay, J.; Volkmer, D. *Tetrahedron Lett.* **2009**, *50*, 1303-1306.

3. Mastalerz, M.; Dyker, G.; Flörke, U.; Henkel, G.; Oppel, I. M.; Merz, K. *Eur. J. Org. Chem.* **2006**, 4951-4962.

4. Aspley, C. J.; Gareth Williams, J. A. New. J. Chem. 2001, 25, 1136-1147.