1	Supplementary Information for "Stable, diverse, fecal-derived in vitro microbial
2	communities that model the intestinal microbiota response to antibiotics"
3	
4	Authors: Andrés Aranda-Díaz ¹ , Katharine Michelle Ng ¹ , Tani Thomsen ¹ , Imperio Real-
5	Ramírez ¹ , Dylan Dahan ² , Susannah Dittmar ¹ , Carlos Gutierrez Gonzalez ³ , Taylor
6	Chavez ¹ , Kimberly S. Vasquez ² , Taylor H. Nguyen ¹ , Feiqiao Brian Yu ⁴ , Steven K.
7	Higginbottom ² , Norma F. Neff ⁴ , Joshua E. Elias ⁴ , Justin L. Sonnenburg ^{2,4} , Kerwyn Casey
8	Huang ^{2,4*}
9	
10	¹ Department of Bioengineering, Stanford University, Stanford, CA 94305
11	² Department of Microbiology and Immunology, Stanford University School of
12	Medicine, Stanford, CA 94305
13	³ Department of Chemical and Systems Biology, Stanford University School of Medicine,
14	Stanford, CA 94305
15	⁴ Chan Zuckerberg Biohub, San Francisco, CA 94158
16	

17 *Correspondence: <u>kchuang@stanford.edu</u>

Supplementary Tables

Strain	Closest relative in NCBI 16S ribosomal RNA	Ciprofloxacin MIC (µg/mL)
	sequence database	
TT1	Enterococcus hirae ATCC 9790	2
TT2	Escherichia fergusonii ATCC 35469	<0.5
TT3	[Clostridium] symbiosum ATCC 14940	16
TT4	Bacteroides thetaiotaomicron JCM 5827	16
TT5	[Clostridium] clostridioforme ATCC 25537	32
TT6	Blautia producta JCM 1471	32
TT7	[Clostridium] scindens strain DSM 5676	32
TT8	<i>Enterococcus faecium</i> strain DSM 20477	4
TT9	[Clostridium] hylemonae TN-272	32
TT10	Enterococcus faecalis NBRC 100480	4
TT11	[Clostridium] hathewayi 1313	32
TT12	Bacteroides fragilis NCTC 9343	4
TT13	Flavonifractor plautii 265	8
TT14	Bacteroides uniformis JCM 5828	16
TT15	Parabacteroides distasonis ATCC 8503	4

Medium	Formulation	Sterilization	Storage
BHI	Commercially available (BD 211061)	Autoclave 20 min	Room
			temperature (RT)
TYG	As described in (Whitaker et al., 2017)	0.22-µm filter	4 °C
GAM	Commercially available (HiMedia M1801)	Autoclave 20 min	RT
YCFA	As described in (Duncan et al., 2002).	0.22-µm filter	4 °C
	Vitamins and cysteine added 48 h before		
	experiment		

Table S2: Media used in this study, related to Figure 1.

22 Supplementary Figures

24 Figure S1: Robust, high-throughput cultivation of fecal-derived SICs and

colonization of a germ-free mice by an SIC. Related to Figures 1 and 2.

26	A) In vitro passaging leads to stable and complex SICs. Family-level composition of
27	three replicate SICs from two fecal samples (Pre MD mice #1 and #2) during
28	passaging in BHI for 16 rounds <i>in vitro</i> . Passage 0 is the fecal inoculum.
29	B) In vitro-passaged SICs are highly reproducible. Summary of the reproducibility of
30	the three replicates for the mouse 1 SICs in Fig. 1 B-D. R and p were computed using
31	only ASVs present in both samples. Also shown is the percentage of ASVs that were
32	present in both replicates at >0.1% abundance ("shared"), with the total number of
33	ASVs in parentheses.
34	C,D) SICs can be grown in larger volumes and can be frozen and revived without
35	affecting composition. ASV-level relative abundance values for the SIC in Fig. 1 B-D
36	after 7 passages were compared with the same SIC grown for one passage in a larger
37	vessel without shaking (C), and after freezing with 25% glycerol $$ at -80 $^\circ$ C and
38	reviving for one passage (D). R and p were computed using only ASVs present in
39	both samples. ASVs with relative abundance < 10^{-4} were set to 10^{-4} for visualization.
40	E) Families that are overrepresented <i>in vitro</i> recede <i>in vivo</i> . Shown is a comparison of
41	family-level relative abundance of an SIC and the humanized-mouse fecal inoculum
42	from which it was derived (left), or ex-germ-free mice colonized with the SIC (right,
43	SIC <i>n</i> =1, inoculum <i>n</i> =1, SIC-colonized <i>n</i> =3). Families with relative abundance < 10^{-4}
44	were set to 10^{-4} for visualization. Mouse data are the same as in Fig. 2B.

45	F)	The secreted proteome of mice colonized with SIC is similar to the proteome of
46		humanized mice. M. musculus proteins present at levels 10-fold higher in mice than
47		in SICs were normalized by their mean abundance in humanized mice.
48		Dendrograms resulting from hierarchical clustering of normalized relative
49		abundance of proteins in germ free (GF), SIC-colonized (SIC col.), or humanized
50		mice (Hum.) housed in three cages (A, B, and C).

52 Figure S2: Diet and antibiotics have large, distinct, interacting effects on the

53 composition of the microbiota, related to Figure 3.

- 54 A,B) Ciprofloxacin elicits large changes in microbiota composition at the phylum (A)
- and family (B) level *in vivo*. Each time point has two bars corresponding to the two
- 56 mice in each group.
- 57 C) Diversity *in vivo* decreases during ciprofloxacin treatment and does not fully recover
- ⁵⁸ after treatment. Richness (number of ASVs in rarefied data) of fecal inocula.

60 Figure S3: SICs are more reproducible in BHI than in other media, related to Figure 3.

A) Technical replicates are largely reproducible. Cumulative density function of

62 Pearson correlation coefficient (*R*) for all pairwise comparisons between technical

63 replicates.

- 64 B) Proportion of technical replicate pairwise correlations *R*<0.6 for the 4 growth media.
- 65 C) Non-reproducible technical replicates share similar dynamics during early passages.
- 66 Family-level composition during *in vitro* passaging for 7 rounds of three SICs with
- 67 low correlation coefficients after 7 passages. (i) Technical replicates of SIC
- 68 originating from SD mouse #2 during pre-treatment, grown in GAM. (ii) Technical

- 69 replicates of SIC originating from MD mouse #2 during peak of treatment, grown in
- 70 YCFA. (iii) Technical replicates of SIC originating from SD mouse #2 during residual
- 71 treatment, grown in YCFA.

73 Figure S4: SICs maintain composition after growth in larger volumes without

A-D) Correlation plots of log¹⁰(relative abundance) at the ASV level for 8 SICs grown in
BHI after 7 passages against the same SIC grown for one passage in a larger volume
(3 mL) without shaking (A), and after freezing and reviving for one (B), two (C), or
three (D) passages. Pearson coefficients (*R*) and their *p*-values were computed using

- only data points present in both samples. ASVs with relative abundance $<10^{-4}$ were
- 80 set to 10^{-4} for visualization purposes.

82 Figure S5: Certain families generally co-occur in SICs, related to Figure 3.

83	A) Median \log_{10} (relative abundance) of families across all samples ($n=1728$) binned by
84	first two principal components. Only families present in >10% of the samples are
85	shown.
86	B) Log ₁₀ (relative abundance) of families in (A) in each of the inocula. Families with
87	relative abundance $<10^{-4}$ were set to 10^{-4} for visualization purposes.
88	C) Medium and inoculum determine the final composition of passaged SICs. The 7 th
89	passage of all 192 SICs in a PCoA of SIC composition using unweighted Unifrac
90	distance computed on all <i>in vivo</i> and <i>in vitro</i> samples at the ASV level. Samples are
91	separated by media, with colors and shapes representing the timepoint during
92	ciprofloxacin treatment and diet, respectively, in the mice from which the inocula
93	were taken. Symbols are the centroid of three replicates, with lines connecting the
94	replicates to the centroid. Original fecal inocula are plotted in light colors. BHI data
95	is the same as in Fig. 2C.
96	D) SICs derived from feces at the peak of treatment <i>in vivo</i> are most distinct from the
97	composition of their inoculum suggesting low viability of detected strains. Weighted
98	Unifrac distance of the 7 th passage in BHI of each SIC to their fecal inoculum.
99	Colored circles, mean distance for each medium; individual SICs in gray. Error bars,
100	standard deviations; <i>n</i> =12. Dashed line, mean distance between fecal samples.
101	E) In vitro passaging in BHI can produce an SIC that retain abundant families in the
102	fecal inoculum. Mean family-level relative abundances (from mean of passages 4-7)

103		for three SIC triplicates compared with the fecal inoculum from which it originated.
104		Families with relative abundance <10 ⁻⁴ were set to 10 ⁻⁴ for visualization purposes.
105	F)	SIC yield scales with diversity. Mean OD of SICs after 20 h of growth in BHI
106		passages 3-7 increases with increasing richness (number of ASVs in rarefied data) in
107		passage 7. <i>R</i> , Pearson correlation coefficient; <i>n</i> =48. BHI data is the same as in Fig. 2E.

109 Figure S6: Taxa loss and emergence are correlated with inoculum diversity, related to

110 **Figure 3.**

111 A-D) Correlation plots for inoculum diversity (number of ASVs in (A) and (B), and

- families in (C) and (D), in rarefied data) with fraction of taxa lost in (A) and (C) and
- emerged in (B) and (D), for all 192 passaged SICs. Pearson correlation coefficients (*R*)
- and their *p*-values were computed from all data points in each plot (*n*=48).

- 115 E,F) Most ASV loss or emergence occurred within the first three passages. Cumulative
- 116 density function for the passage at which an ASV was lost (E) or emerged (F).

118 Figure S7: Effects and dynamics of antibiotic treatment on SICs, related to Figures 4-

6.

120	A,B) In vivo ciprofloxacin treatment makes SICs more susceptible to S. Typhimurium
121	invasion. (A) Colonies of S. Typhimurium SL1344 after 48 h of growth with SICs
122	spotted on LB+streptomycin in aerobic conditions after a 1:10 ⁴ dilution. These data
123	are a biological replicate (SICs derived from mice housed in a different cage) of Fig.
124	4B. *: missing replicate. (B) Single-cell quantification of mCherry-tagged S.
125	Typhimurium 14028s after 48 h of co-culturing with SICs derived from pre- and
126	residual-treatment mice fecal inocula. <i>p</i> -values are from a Student's two-sided <i>t</i> -test
127	between each pairwise comparison, <i>n</i> =3.
128	C) SICs show little adaptation to continuous ciprofloxacin treatment. Maximum growth
129	rate decreases or remains approximately constant across three passages in
130	ciprofloxacin.
131	D-J) SICs derived from pre-exposed inocula show increased resilience to ciprofloxacin
132	treatment. (D) Experimental setup for <i>in vitro</i> antibiotic treatment of a pre-exposed
133	SIC. An SIC passaged in BHI from residual treatment humanized mouse fecal
134	inoculum (Res-SD) was revived after freezing and passaged twice in BHI. The SIC
135	was passaged in ciprofloxacin three times (i,ii,iii) or in ciprofloxacin once and then
136	twice without the drug (i,iv,v). (E) In contrast to the Pre-SD SIC (Fig. 3C), the yield
137	of Res-SD SIC was virtually unaffected by ciprofloxacin, although the growth rate
138	decreased with concentration. OD was measured after 48 h of growth with
139	ciprofloxacin. Lines, means of triplicate growth curves; error bars, standard

140	deviations. (F) Richness (number of ASVs in rarefied data) of Pre-SD SIC remained
141	constant during continuous ciprofloxacin treatment. Data are means of two technical
142	replicates. (G) Bacteroidaceae and Lachnospiraceae dominated during three rounds
143	of ciprofloxacin treatment of the Res-SD SIC. Data are the mean of family-level
144	abundances across two technical replicates. (H) Treatment of the residual treatment
145	humanized mouse fecal inoculum (Res-SD) SIC led to highly reproducible outcomes.
146	Shown are comparisons of relative abundance at the ASV level between replicates
147	after 3 passages of growth in BHI with ciprofloxacin. Pearson coefficient (R) and its
148	<i>p</i> -value were computed only from data points present in both samples. ASVs with
149	relative abundance $<10^{-4}$ were set to 10^{-4} for visualization. (I) Treatment outcome of
150	Pre-SD SICs was less reproducible than Res-SD SICs at high concentrations. Shown
151	are comparisons of relative abundance at the ASV level between replicates after 3
152	passages of growth in BHI with ciprofloxacin. Pearson coefficient (R) and its p -value
153	were computed only from data points present in both samples. ASVs with relative
154	abundance $<10^{-4}$ were set to 10^{-4} for visualization. (J) Enterococcaceae can recover
155	after one round of ciprofloxacin treatment in the Res-SD SIC. Data are the mean of
156	two replicates.
157	K-M) SICs derived from pre-exposed inocula show increased resilience to ciprofloxacin
158	treatment. (K) Pre-SD SIC growth rate can recover to levels similar to values before

159 treatment at low concentrations. Maximum growth rate was calculated across

160	ciprofloxacin concentrations during one round of antibiotic treatment and two
161	rounds of recovery. Lines, mean of three technical replicates; error bars, standard
162	deviations. (L) Growth rate recovery after transient ciprofloxacin treatment is linked
163	to the recovery of fast-growing species. Maximum growth rate of SICs grown in BHI
164	after one round of treatment with ciprofloxacin and two rounds without drug. SICs
165	were classified by their summed relative abundances of Enterococcaceae and
166	Enterobacteriaceae (<i>f</i> _{Entero}). Black circles are the mean maximum growth rate for each
167	group ($n=21$ for $f_{Entero} < 20\%$ and $n=3$ for $f_{Entero} > 20\%$), error bars are standard
168	deviations. Individual data points are plotted in gray. <i>p</i> -value is from a Student's
169	two-sided <i>t</i> -test between the two groups. (M) Erysipelotrichaceae recovery is
170	reversed by a second ciprofloxacin treatment. Data are the family-level mean
171	log10(relative abundance) of two replicates during one round of ciprofloxacin
172	treatment followed by one round of recovery and a second treatment.
173	N,O) Bacteroidaceae are remodeled in the Res-SD SIC during and after ciprofloxacin
174	treatment, with <i>B. vulgatus</i> as the only member to generally survive. Relative
175	abundances of Bacteroides species in the Res-SD SIC during continuous ciprofloxacin
176	treatment (N) or after one round of treatment followed by two rounds of recovery
177	(O).