Electronic Supplementary Information

RSC Advances

Photoluminescence color stability of Greene-emitting InP/ZnS core/shell quantum dots embedded in silica prepared via hydrophobic routes

Taichi Watanabe,^a Yoshiki Iso,*^a Tetsuhiko Isobe*^a and Hirokazu Sasaki^b

^aDepartment of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan

^bSHOEI CHEMICAL INC., 2-1-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo 163-0443, Japan

*Corresponding Authors

E-mail address: iso@applc.keio.ac.jp (Y.I.), isobe@applc.keio.ac.jp (T.I.);

Tel: +81 45 566 1558 (Y.I.), +81 45 566 1554 (T.I.); Fax: +81 45 566 1551

Fig. S1 Photograph showing blue light irradiation of a sample. The actual experiment was

performed in the dark.

Fig. S2 Photographs of TEOS dispersion of InP/ZnS QDs at 9.3 mg mL⁻¹ under (left) white light and (right) 365-nm near-UV light. The images were captured immediately after mixing.

Fig. S3 Photographs of mixtures of TEOS (3 mL) and lactic acid (x mL) after gelation.

		Color coordinate
Fig. 3	(a)	(0.2438, 0.6830)
	(b)	(0.2500, 0.6747)
	(c)	(0.3198, 0.6239)
Fig. 8	(a)	(0.2333, 0.6916)
	(b)	(0.2225, 0.6957)
	(c)	(0.2221, 0.6941)

 Table S1 Detailed values of the color coordinates plotted in Figs. 3 and 8.

Fig. S4 Photographs of 0.5-mg mL⁻¹ toluene dispersions of (a) as-received InP/ZnS QDs,
(b) TMOS-modified InP/ZnS QDs (20 h), and (c) TMOS-modified InP/ZnS QDs (7 d)
under (left) white light and (right) 365-nm UV light.

Stirring durationQY (%)(Immediately after dispersion)6720 h617 days55

Table S2 PLQYs of toluene dispersions of the as-received InP/ZnS QDs without TMOS

after stirring for a certain time. $\lambda_{ex} = 468.3$ nm.

LED. (a) As-received InP/ZnS QDs, (b) TMOS-modified InP/ZnS QDs (20 h), and (c) TMOS-modified InP/ZnS QDs (7d). $\lambda_{ex} = 468.3$ nm.