
SUPPLEMENTARY MATERIALS AND METHODS 

Bulk Sequencing 
Bulk RNAseq was performed on fetal samples taken at GD105 (n=2), 
GD130 (n=2), and GD150 (n=3) (see Table S1). Tissue pieces weighing 
approximately 100 mg were used for RNA extraction. Total RNA was 
extracted from the snap-frozen tissues using TRIzol Reagent (Life 
Technologies, 15596-018) and a power tissue-homogenizer (OMNI-TH 
International, Kennesaw, GA). The RNA was purified using a Qiagen 
RNeasy Mini kit (Qiagen, 74104) according to the manufacturer’s 
recommendations.  An on-column DNase I digestion step was included in 
the purification procedure. The concentration of the eluted RNA was 
determined using a NanoDrop (ND-1000) spectrophotometer. Next 
generation sequencing of equimolar pools of cDNA libraries was 
performed by loading a paired-end 75bp rapid flow cell to generate a 
minimum of 25M raw reads on a HiSeq 2500 sequencing platform 
(Illumina, San Diego, CA). Raw sequencing data was submitted to Gene 
Expression Omnibus (GSE178680). Partek Flow was used for sequencing 
alignment and quantification. Ensembl IDs for rhesus were used for gene 
annotation. RPKM (Reads Per Kilobase of transcript, per Million mapped 
reads) was calculated for mRNA abundance analysis. Differentially 
expressed genes of rhesus lung development were identified using 
ANOVA with a corrected p-value (FDR) <0.05 and fold change > 1.5 
between any age. Differentially expressed genes were subjected to k-means 
clustering, and genes with two major expression patterns (i.e., induced or 
suppressed with advancing gestational ages) were selected for functional 
enrichment analysis using ToppGene (82). We compared primate data 
with RNA-seq data from mouse lung development time course data (42) 
(GSE122331). Genes differentially expressed during fetal lung 
development in mouse and rhesus macaque were directly compared. 

scRNA Sequencing and Analysis 
Raw sequencing data (submitted to Gene Expression Omnibus, 
GSE169390; also available for viewing via https://bit.ly/rhesuslung, 
https://bit.ly/rhesuslung_explore, https://bit.ly/rhesuslung_cellxgene) 
were aligned to the rhesus macaque reference Mmul_10 with Cell Ranger 
3.0.2 (10x Genomics), generating expression count matrix files. Cells with 
fewer than 500 features or greater than 5000 features, as well as cells that 
contained greater than 25% of reads from mitochondrial genes, were 
removed. Putative multiplets were removed using DoubletFinder (83) 
(version 2.0). The Seurat package (version 3.1.0, 
https://satijalab.org/seurat/) (41) in R 4.0.2 was used for identification of 
common cell types across different experimental conditions, differential 
expression analysis, and most visualizations. After log-normalization, 
5000 variable features were identified using the vst method for each 
sample, and experimental and control animal data were integrated using 
the FindIntegrationAnchors and IntegrateData functions with default 
parameters. Integrated data was scaled, and regression performed for 
mitochondrial genes, ribosomal genes, and cell cycle state.  PCA was 
performed using the 5,000 most highly variable genes and the first 30 
principal components (PCs), followed by FindNeighbors() and 
FindClusters() commands to generate UMAP clustering. Epithelial, 
endothelial, mesenchymal, and immune populations were identified and 
clustered via expression of CDH1, PECAM1, COL1A1, and PTPRC 
respectively, and manually annotated for further clustering. Subset objects 
of each cell lineage were generated for the combined control, LPS, and 
blockade datasets. Manual annotation of cellular identity was performed 
via identification of differentially expressed genes for each cluster using 
Seurat’s implementation of the Wilcoxon rank-sum test (FindMarkers()) 
and comparing those markers to known cell type-specific genes from 
LungMAP (42). Cell type annotations were consistent across all three 
treatment conditions and all objects. 
These common Seurat objects were used as the basis for additional 
analytical tools to explore our scRNAseq data. Power analysis was 
performed to estimate true positive and false positive rates for populations 
of different cell sizes using the R package powsimR (84) in R 4.1.0, with 

default parameters. Normalized gene expression from alveolar type 2 
cells from one control animal was used as input, as per package 
instructions, and derived parameters were used to generate 10 
simulations of 2000 variable genes with 20% differentially expressed 
genes in the treatment condition and a nominal FDR of <0.1. 
We used slingshot v2.0 (https://github.com/kstreet13/slingshot) 
(46) and condiments (https://github.com/HectorRDB/
condiments) (53) in R 4.1.0 to determine pseudotime lineage 
trajectories and assess differential lineages across conditions. 
Slingshot trajectories were generated using the slingshot() command 
with default parameters and specifying only the starting cell 
population. For condiments analysis, we used the topologyTest and 
progressionTest to estimate differential trajectories between conditions 
and generate p-values. PEP trajectories were identified by 
Monocle3 (https://cole-trapnell-lab.github.io/monocle3/) (85). For 
ligand-receptor analysis, we used CellChat (56) (https://github.com/
sqjin/CellChat) v1.1 using the SecretedSignaling subset of the Human 
CellChatDB, with default parameters. Differential expression 
heatmaps, GO (gene ontology), pathway (PathwayCommons), and 
TF (GO-Elite TFTarget database) differentials were generated using 
cellHarmony (86), using the cell-to-cluster associations from Seurat as 
the label file rather than alignment to the reference (--referenceType 
None), fold >1.2, and empirical Bayes moderated t-test <0.05 (FDR 
corrected). Genes with the opposite pattern of regulation in 
combination blockade vs. injury compared to injury vs. control, were 
considered restored with treatment (same statistical criterion as 
above). cellHarmony GO-Elite results are displayed using GraphPad 
Prism 9.0.  Visualizations were generated by these tools, with 
additional use of ggplot2 when needed.  
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Figure S1. Rhesus macaque lung development models key aspects of human lung organogenesis.  (A to C) Comparison of human, rhesus macaque, and mouse 
lung histologically and anatomically during the alveolar stage of development. Human lung (A) is organized into 3 right lobes and 2 left lobes, with a complex airway 
tree. The distal terminal bronchi (TB) in humans branch into respiratory bronchioles (RB), which branch into alveolar ducts (AD), that then give rise to multiple alveoli 
(Alv). Rhesus (B) are similar to human in lobar anatomy, airway complexity, and distal lung anatomy, including respiratory bronchioles, whereas murine lungs (C) are 
less branched, and terminal bronchi directly give rise to alveolar ducts at a discrete bronchoalveolar duct junction (BADJ). Alveologenesis and alveolar development 
occur in utero in humans and rhesus, whereas mice undergo alveologenesis in the first two weeks of postnatal life. (D to F) H&E of rhesus lung during the canalicular 
(D; ~GD105), saccular (E; ~GD130), and alveolar (F; ~GD150) stages of third trimester lung development show progressive alveolar maturation and gas exchange 
development occurs through extension of alveolar septa which are prominent by GD130 (E). By gestational day 150 (F), extensive alveolar structures are present with 
mature septa. Scale bars = 50 μm. AD = Alveolar Duct; Alv = Alveolus; BADJ = Bronchoalveolar Duct Junction; GD = Gestational Day; PND = Postnatal Day; RB = Respiratory 
Bronchiole; TB = Terminal Bronchiole. 
 
  



 
 

Figure S2. Progressive cellular maturation of the rhesus lung during third trimester gestation. (A to I) Confocal imaging of epithelial, mesenchymal, and 
endothelial lineages over the canalicular (A, D, G; ~GD105), saccular (B, E, H; ~GD130), and alveolar (C, F, I; ~GD150) stages of lung development. (A to C) Co-
development of NKX2.1+ epithelium, CD31/PECAM+ endothelium, and ACTA2+ myofibroblast lineages, with ultimate formation of mature capillary networks in close 
proximity to both epithelial and mesenchymal lineages. (D to F) Progressive differentiation of NKX2.1+ epithelium with SCGB1A1+ secretory cells and TUBA1A+ ciliated 
cells to develop mature airway structures in preparation for air breathing. (G to I) Progressive differentiation and maturation of the alveolar epithelium shown through 
the presence of HOPX+ AT1 cells and ABCA3+ AT2 cells forming networks with ACTA2+ mesenchymal lineages. (J to P) Examination of proliferative dynamics in the 
developing lung. Proliferation decreases as differentiation increases over the period of alveolarization. (P) Quantification obtained by counting phosphorylated 
Histone H3 (pHisH3) cells and comparing to DAPI+ nuclei (white bars) or NKX2.1+ epithelial cells (grey bars). Significantly more proliferation is seen in nonepithelial 
cells. (Q) Postnatal day 1 (PND1) human lung, showing similar maturation and morphology in the context of both NKX2.1+ epithelial cells and ACTA2+ mesenchymal 
cells when compared to GD150 rhesus fetal lung. ** = p <0.01, *** = p <0.001 by Student’s t-test. Image inset panels are representative of regions outlined with dashed 
white boxes. Scale bars = 200μm. 
 

 
 

Figure S3. Method for quantification of gas exchange surface development. Confocal z-stacks were loaded into Imaris for generation of spots for DAPI+ nuclei (A 
to A”) to identify all cells, surfaces for EDNRB+ cells (B to B”) to identify gas exchange surface volume, spots for HOPX+ nuclei (C to C”) to identify AT1 cells, and a 
composite image of all channels (D to D”). Overlay of channels in original confocal (A to D), spot/surface rendering (A’ to D’), and overlap of surfaces with original (A” 
to D”). Automated counts of nuclei, cell surfaces, and AT1 cells were generated per image for the quantification seen in Figures 1 and 5. Scale bars = 50 μm. 



Figure S4. Bulk RNA sequencing of murine and rhesus lung during development. (A to D) Analysis of major differentially regulated genes between GD105 and 
GD150 in bulk lung RNAseq. Heatmap of differentially regulated genes during rhesus lung maturation (A) shows significant changes, with distinct gene sets decreasing 
(B) or increasing (C) across development. GO analysis using ToppGene (82) of major up (orange) and downregulated (blue) genes demonstrates progressive maturation 
and reduced proliferation as development proceeds. (E to H) Evaluation of major differentially regulated genes as development proceeds comparing later timepoints
of rhesus to GD105 (GD105 [n=2], GD130 [n=2], GD150 [n=3] – see Table S1) (E) and later timepoints of mouse lung development (42) to E15 (F). Downregulated (G) 
and upregulated (H) genes were highly concordant between species, implying conservation of major developmental processes across mammalian evolution.



Figure S5. Low level expression of SARS-CoV-2 protease TMPRSS2 in fetal primate lung.  (A to C) Evaluation of TMPRSS2 expression in fetal rhesus lung compared 
to adult (5yo) rhesus. Minimal expression of TMPRSS2 is evident in either the airway or alveolar regions of the developing rhesus lung (A) even following LPS injury (B). 
Adult rhesus lung (C), obtained after necropsy for non-pulmonary disease (arthritis), shows significant TMPRSS2 expression (white) in both airway and alveolar cells, 
also colocalizing with FOXJ1+ (red) ciliated cells, concordant with age-specific expression reported in mouse and human lung (40). Scale bars = 50 μm. 

Figure S6. Power calculations and subset analysis of scRNAseq data. (A to E) Power analysis for scRNAseq using the powsimR package. Power calculations done 
for groups of 75, 250, 500, or 1000 cells, assuming 20% differentially expressed genes between conditions and a nominal FDR of 0.1. (A) Conditional true positive rate 
(TPR) and false discovery rate (FDR) per sample size comparison per gene expression range stratum (mean ± standard error). (B) Number of equally (EE) and 
differentially expressed (DE) genes per gene expression stratum. (C) Receiver-Operator-Characteristics (ROC) Curve per sample size. (D) Precision-Recall (PR) curve 
per sample size tested. (E) Summary statistics per sample size setup rounded to two digits. (F) Number of differentially expressed genes that are upregulated or 
downregulated in each gene population with LPS compared to control. (G to I) Violin plots of gene expression for overrepresented gene categories by cellHarmony 
analysis. LPS response (G) and hypoxia response (H) are notable in multiple endothelial populations after LPS, while a subset of pro-angiogenic factors (I) show 
reduced gene expression after LPS-mediated injury. Abbreviations as defined in main text, specifically Figure 3.  



 
 

Figure S7. Conservation of the proliferative endothelial progenitor lineage across mammalian evolution. Single-cell RNA-seq (scRNAseq) analysis identifies 
proliferative endothelial progenitor (PEP) cells in fetal human lung and developmental mouse lung. (A to B) Monocle3 (85) pseudotime analysis of scRNAseq of vascular 
endothelial (EC) cells from fetal human lung predicted a differentiation lineage from the proliferative EC progenitor to alveolar capillaries, general capillaries, and 
venous like cells (data displayed originally from (52)). Cell identities were defined based on the expression of EC cell subtype markers including pan-EC (CDH5), 
proliferation (MKI67, FOXM1), EC progenitor (KIT, FOXF1), general capillary (GPIHBP1), alveolar capillary (TBX2, EDNRB), venous (NR2F2, CPE), and arterial (GJA5) cell 
markers. Arterial cells make up a small portion of cells in this dataset. Proliferative EC progenitor cells co-expressed FOXF1, KIT, and FOXM1. (C to D) The proliferative 
EC progenitor is also identified in Drop-seq of EC cells from postnatal day (PND) 3 and PND7 mouse lung (50); and pseudotime analysis identifies a similar differentiation 
lineage from the proliferative EC progenitor to  alveolar capillaries, general capillaries, venous EC, and arterial EC cells, but not to lymphatic EC cells. Cell identities were 
defined based on the expression of EC cell subtype markers, including pan-EC (Cdh5), proliferation (Mki67, Foxm1), EC progenitor (Kit, Foxf1), general capillary (Gpihbp1, 
Aplnr), alveolar capillary (Apln), venous (Nr2f2, Cpe), and arterial (Gja5) cell markers. (E) Overlap of genes with FDR <0.1 from rhesus PEP with cell populations identified 
in human lung in (A). (F) Enriched terms in ToppGene (82) GO analysis of PEP genes in overlapping set from (E). (G to I’) Progressive differentiation of alveolar capillary 
endothelial cells during alveologenesis, with extensive network at GD150 (red arrowhead = APLNR+ general capillary, green arrowhead = EDNRB+ alveolar capillary, 
yellow arrowhead = APLNR+/EDNRB+ intermediate endothelial cell). (J to K) PEPs are lost in LPS lung injury, with few detectable FOXM1+/CD31+ cells. (L) Model of 
endothelial differentiation, including data from our study. LPS interferes with proper endothelial patterning via loss of PEPs and disruption of alveolar capillary 
differentiation. Scale bars = 50 μm. 

 
 
 



 
 

Figure S8. Major signaling patterns in LPS-treated lungs. CellChat analysis of major signaling pathways in milieu of LPS-injured primate lung. See details in Figure 
4 legend. (A) Outgoing signaling patterns following LPS injury, with significant inflammatory pathway activation. Activated matrix fibroblasts contribute to several 
major inflammatory signaling pathways. (B) Incoming signaling pathways following LPS. CCL and CXCL responses are notable in the endothelium and epithelium. 

 
  



Table S1. Rhesus Sample Information. 
 

Animal ID Treatment GD Sex Year H&E + 
Imaging 

Quantification Bulk 
RNAseq 

scRNAseq 

33-14 (LMR14-01) Control (~GD105) 108 F 2014 ✓  ✓  

40-14 (LMR14-02) Control (~GD105) 108 F 2014 ✓    

41-14 (LMR14-03) Control (~GD105) 107 M 2014 ✓  ✓  

24-14 (LMR14-04) Control (~GD130) 130 M 2014 ✓  ✓  
28-14 (LMR14-05) Control (~GD130) 132 F 2014 ✓  ✓  
44-14 (LMR14-06) Control (~GD130) 136 F 2014 ✓    
209-17 Control (~GD130) 135 F 2017 ✓    

423-18 Control (~GD130) 132 M 2018 ✓    

427-18 Control (~GD130) 131 M 2018 ✓    

430-18 Control (~GD130) 130 M 2018 ✓    

432-18 Control (~GD130) 129 M 2018 ✓ ✓   

506-19 Control (~GD130) 129 M 2019 ✓ ✓  ✓ 
515-19 Control (~GD130) 131 F 2019 ✓   ✓ 
529-19 Control (~GD130) 130 M 2019 ✓ ✓   

32-14 (LMR14-07) Control (~GD150) 152 M 2014 ✓  ✓  

37-14 (LMR14-08) Control (~GD150) 151 F 2014 ✓  ✓  

46-14 (LMR14-10) Control (~GD150) 144 M 2014 ✓  ✓  

218-17 LPS 16h 130 M 2017 ✓ ✓   

223-17 LPS 16h 130 F 2017 ✓ ✓   

429-18 LPS 16h 132 F 2018 ✓    

436-18 LPS 16h 136 F 2018 ✓    

437-18 LPS 16h 136 F 2018 ✓    

442-18 LPS 16h 130 M 2018 ✓ ✓   

512-19 LPS 16h 131 F 2019 ✓   ✓ 
513-19 LPS 16h 130 F 2019 ✓   ✓ 
27-14 LPS 48h 128 F 2014 ✓ ✓   

36-14 LPS 48h 131 F 2014 ✓ ✓   

90-15 LPS 48h 127 F 2015 ✓ ✓   

232-17 LPS 5d 133 M 2017 ✓    

233-17 LPS 5d 133 F 2017 ✓ ✓   

234-17 LPS 5d 133 F 2017 ✓ ✓   

239-17 LPS 5d 134 M 2017 ✓ ✓   

240-17 LPS 5d 133 M 2017 ✓    

241-17 LPS 5d 133 M 2017 ✓    

242-17 LPS 5d 131 F 2017 ✓    

500-19 LPS + anti-TNF + IL-1RA 135 M 2019 ✓ ✓   

501-19 LPS + anti-TNF + IL-1RA 133 M 2019 ✓    

509-19 LPS + anti-TNF + IL-1RA 135 M 2019 ✓   ✓ 
510-19 LPS + anti-TNF + IL-1RA 133 F 2019 ✓ ✓  ✓ 
511-19 LPS + anti-TNF + IL-1RA 131 M 2019 ✓ ✓  ✓ 
n = 40     n = 40 n = 15 n = 7 n = 7 

 
 
 
 
 
 
  



Table S2. ImmPRESS-HRP + TSA Antibodies and Reagents. 
 

Primary Antibody Secondary Detection (1:100) 
anti-EDNRB (mouse, R&D systems, MAB4496, 1:250) 

TSA Plus Fluorescein (Akoya Biosciences, NEL741001KT) anti-FOXM1 (rabbit, Abcam, ab207298, 1:250) 

anti-Sftpc (rabbit, Seven Hills Bioreagents, Rb458, 1:250) 

anti-HOPX/HOP (E-1) (mouse, Santa Cruz, sc-398703, 1:500) TSA Plus Cyanine 3.5 (Akoya Biosciences, NEL763001KT) 

anti-APLNR (rabbit, Invitrogen, 702069, 1:100) 
TSA Plus Cyanine 5 (Akoya Biosciences, NEL745001KT) 

anti-TTF1/Nkx2.1 (rabbit, Seven Hills Bioreagents, Rb1231, 1:1000) 

 
 
Table S3. Standard Immunofluorescence Antibodies. 
 

Primary Antibody Secondary Antibody (1:200) 
anti-ABCA3 (guinea pig, Seven Hills Bioreagents, GP985, 1:100) Goat anti-Guinea Pig IgG Alexa Fluor 555 (Invitrogen, A21435) 

anti-ACTA2/α-Smooth Muscle Actin (mouse IgG2a, Sigma, A5228, 1:2000) 
Donkey anti-Mouse IgG2a Alexa Fluor 633 (Invitrogen, A21136) 

Donkey anti-Mouse IgG Alexa Fluor 647 (Invitrogen, A31571) 

anti-HOPX/HOP (FL-73) (rabbit, Santa Cruz, SC-30216, 1:200) Goat anti-Rabbit IgG Alexa Fluor 488 (Invitrogen, A11034) 

anti-Ki67 (mouse, BD Biosciences, 556003, 1:100) Goat anti-Mouse IgG1 Alexa Fluor 568 (Invitrogen, A21124) 

anti-PECAM/CD31 (goat, Santa Cruz, sc-1506, 1:100) Donkey anti-Goat IgG Alexa Fluor 568 (Invitrogen, A11057) 

anti-PECAM/CD31 (sheep, R&D Systems, AF806, 1:50) Donkey anti-Sheep IgG Alexa Fluor 555 (Invitrogen, A21436) 

anti-pHistone H3 (Ser-10) (rabbit, Santa Cruz, sc-8656-R, 1:100) 
Goat anti-Rabbit IgG Alexa Fluor 488 (Invitrogen, A11034) 

Donkey anti-Rabbit IgG Alexa Fluor 555 (Invitrogen, A31572) 

anti-SCGB1A1/CCSP (rabbit, LS Biosciences, LS-B6822, 1:200) Goat anti-Rabbit IgG Alexa Fluor 488 (Invitrogen, A11034) 

anti-TP63 (mouse, Santa Cruz, sc-71827, 1:100) Goat anti-Mouse IgG Alexa Fluor 488 (Invitrogen, A11001) 

anti-TTF1/Nkx2.1 (guinea pig, Seven Hills Bioreagents, GP237, 1:200) Goat anti-Guinea Pig IgG Alexa Fluor 555 (Invitrogen, A21435) 

anti-TTF1/Nkx2.1 (rabbit, Seven Hills Bioreagents, Rb1231, 1:1000) 
Goat anti-Rabbit IgG Alexa Fluor 488 (Invitrogen, A11034) 

Donkey anti-Rabbit IgG Alexa Fluor 488 (Invitrogen, A21206) 

anti-TUBA1A/Acetylated Tubulin (mouse IgG2b, Sigma, T7451, 1:1000) Donkey anti-Mouse IgG Alexa Fluor 647 (Invitrogen, A31571) 

 
 
Table S4. scRNAseq Metrics. 
 

Sample ID 506-19 515-19 512-19 513-19 509-19 510-19 511-19 
Condition Control Control LPS LPS LPS + 

Blockade 
LPS + 

Blockade 
LPS + 

Blockade 
Estimated Number of Cells 12,458 11,797 8,710 10,502 13,935 10,785 9,465 

Mean Reads per Cell 36,478 41,771 54,776 35,157 28,843 40,956 48,306 

Median Genes per Cell 1,117 1,046 1,107 1,136 933 1,198 1,173 

Number of Reads 4.54E+08 4.93E+08 4.77E+08 3.69E+08 4.02E+08 4.42E+08 4.57E+08 

Total Genes Detected 19,630 19,568 19,506 19,382 19,595 19,735 19,461 

Median UMI Counts per Cell 2,512 2,832 3,662 2,795 2,134 3,109 3,331 

Valid Barcodes 96.8% 97.3% 97.8% 97.6% 96.8% 97.3% 97.0% 

Sequencing Saturation 59.5% 70.5% 67.2% 56.9% 60.4% 60.1% 68.2% 

Q30 Bases in Barcode 96.0% 96.6% 96.6% 96.5% 96.0% 96.6% 96.5% 

Q30 Bases in RNA Read 93.8% 95.6% 95.5% 95.6% 94.1% 95.5% 95.4% 

Q30 Bases in Sample Index 88.4% 95.3% 89.0% 95.8% 87.4% 92.9% 95.3% 

Q30 Bases in UMI 95.8% 96.5% 96.5% 96.5% 95.8% 96.5% 96.4% 

Reads Mapped to Genome 89.0% 92.9% 94.1% 94.4% 92.7% 92.7% 92.8% 

Reads Mapped Confidently to Genome 84.8% 87.3% 88.1% 89.5% 87.6% 88.0% 88.0% 

Reads Mapped Confidently to Intergenic Regions 21.6% 16.4% 17.1% 18.0% 17.1% 17.8% 16.5% 

Reads Mapped Confidently to Intronic Regions 23.5% 24.1% 27.1% 26.8% 21.3% 22.7% 21.6% 

Reads Mapped Confidently to Exonic Regions 39.7% 46.8% 43.9% 44.7% 49.2% 47.5% 50.0% 

Reads Mapped Confidently to Transcriptome 37.0% 43.8% 40.8% 41.3% 45.7% 44.1% 46.6% 

Reads Mapped Antisense to Gene 0.9% 0.8% 0.8% 0.9% 0.9% 0.9% 0.8% 

Fraction Reads in Cells 70.6% 73.7% 90.8% 88.7% 70.3% 75.6% 69.5% 

 


