Grafted Iron(III) Ions Significantly Enhance NO₂ **Oxidation Rate and Selectivity of TiO² for Photocatalytic NOx Abatement**

Julia Patzsch,† Jacob N. Spencer,‡ Andrea Folli,‡ and Jonathan Z. Bloh[∗],†

†*DECHEMA-Forschungsinstitut, Theodor-Heuss-Allee 25, 60486 Frankfurt am Main, Germany*

‡*School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, Wales, United Kingdom*

E-mail: bloh@dechema.de

¹ **1 Supporting Information**

² **1.1 EPR spectroscopy:** *g***-Tensor identification**

³ The resonances at *g* = 9*.*678, 6, 4*.*286 and the broad background signal are indicative of ⁴ high spin Fe(III), ${}^{6}S_{5/2}$ ground term (5 unpaired electrons), described by the total spin

⁵ Hamiltonian in Equation 1, sum of electron Zeeman and zero field interactions.

$$
\hat{H}(Fe(III)) = \hat{H}_{EZI} + \hat{H}_{ZFI} = \mu_B \mathbf{B}^T \mathbf{g} \mathbf{S} + D \left[\hat{S}_z^2 - \frac{1}{3} S(S+1) \right] + E(\hat{S}_x^2 - \hat{S}_y^2) \tag{1}
$$

6 In Equation 1, μ_B is the Bohr magneton, **B** the applied magnetic field, **g** the g-matrix of τ the unpaired electrons, *S* the total spin vector (S_x, S_y, S_z) are components of spin along three

⁸ mutually perpendicular crystalline axes x, y, and z) and *D* and *E* are the zero field splitting ⁹ parameters, which are induced by distortions of the crystal field in the compound. At least ¹⁰ three different ferric crystallographic environments are responsible for the Fe(III) resonances ¹¹ in Fig. 3. The almost isotropic resonance at $g = 4.286$ is often found in strong $(D > h\nu)$ ¹² low symmetry $(E/D \approx 1/3)$ crystal field.^{1,2} This resonance arises from the transition within ¹³ the middle Kramers doublet of the six energy levels $(2S + 1 = 6$ where $S = 5/2$) that at zero field are grouped in three states doubly degenerate (*i.e.* $m_s = \pm 5/2$; $\pm 3/2$; $\pm 1/2$).¹ 14 ¹⁵ The upper and lower pairs have strongly anisotropic *g* values. The three principal values ¹⁶ of the diagonalized **g** matrix are 9.678, 0.857, 0.607.¹ Only the first value is visible in the ¹⁷ spectrum as the other two are above the upper limit of the magnetic field scanned in the 18 present experiment. The resonance at $g = 6$ corresponds to another ferric crystallographic 19 environment with low symmetry $(E/D = 0)$.^{1,2} Solution of the spin Hamiltonian for this ²⁰ crystallographic environment provide a *g* equal to 6 when the magnetic field is perpendicular 21 to S_z and a *g* equal to 2 when the magnetic field is parallel to S_z .¹ This resonance at $22 \text{ } g=2$ is not readily visible as it is covered by the other signals present at free spin region. ²³ However, in a powder one gets all the orientations in the external magnetic field, hence ²⁴ resonances extending from the lowest field, $g = 6$, to the highest field, $g = 2$, with the ²⁵ perpendicular component being statistically more probable than the parallel one. Finally, ²⁶ the broad background signal is produced by crystallographic environments where *D* and $E₂₇$ *E* are both significant and the ratio E/D is in between the limit cases of $E/D = 0$ and ²⁸ $E/D \approx 1/3$. There is no evidence in the spectrum of signals associated with low spin Fe(III), ² ²⁹ *S*1*/*² ground term (1 unpaired electron). This species would exhibit an axial *g* ³⁰ tensor with principal values around 2*.*23 and 1*.*93, that are not found in the spectrum in Fig. 3.2 31

³² **1.2 Kinetic analysis of the NOx oxidation performance**

 The data were either analyzed using Langmuir-Hinshelwood kinetics or, when the reaction rate was found to be linear with the inlet concentration, with first-order kinetics. In both cases, the reaction rates were calculated from the kinetic expressions using the conversion equations for a plug flow type reactor.

$$
k^1 = -\frac{\ln(c/c0)}{\tau} \tag{2}
$$

 This yields eqn. 2 for the case of first-order kinetics which was fit to the measured data points using linear regression. For Langmuir-Hinshelwood kinetics, no explicit equation could be obtained. Therefore, the rate law, eqn. 3, was numerically integrated over the reactor volume using Euler-Cauchy algorithm with a step-width of 0*.*001*V* . The resulting value was then fit to the measured data points using non-linear optimization (Levenberg-Marquardt algorithm). Subsequently, first-order rate constants were calculated from eqn. 4.

$$
\frac{dc}{dt} = -\frac{k \cdot K \cdot c}{K \cdot c + 1} \tag{3}
$$

$$
k^1 = k \cdot K \tag{4}
$$

Figure S1: The conversion of NO over illuminated P25 as a function of inlet concentration analyzed using Langmuir-Hinshelwood kinetics.

Figure S2: The conversion of $NO₂$ over illuminated P25 as a function of inlet concentration analyzed using first-order kinetics.

Figure S3: The conversion of NO over illuminated washed P25 as a function of inlet concentration analyzed using first-order kinetics.

Figure S4: The conversion of $NO₂$ over illuminated washed P25 as a function of inlet concentration analyzed using first-order kinetics.

Figure S5: The conversion of NO over illuminated iron-grafted P25 (0*.*05 at*.*% Fe) as a function of inlet concentration analyzed using first-order kinetics.

1.3 XPS analysis

 A sample grafted with 0.01at.% Fe was subjected to XPS analysis. As seen in Fig. S6, traces of iron might be present (0*.*1 at*.*%) but the signals are very low and near the detection limit so any kind of quantitative interpretation is extremely difficult.

Figure S6: XPS analysis of a sample grafted with 0.01at.% Fe, shown is the binding energy region specific for Fe2p.

⁴⁷ **1.4 NOx oxidation performance of Mn- oder Cu-grafted P25**

Figure S7: The DeNOx-performance of P25 samples grafted with different amounts of Cu(II) and Mn(II) ions. Displayed are the nitrate selectivity (blue) as well as the NO_x removal rates (red).

⁴⁸ **1.5 NOx oxidation performance of other commercially available** ⁴⁹ **TiO² materials grafted with Fe(II) ions**

Figure S8: The DeNOx-performance of other TiO₂ materials grafted with different amounts of iron. Displayed are the initial nitrate selectivity (black) as well as the selectivity (red) and NO_x removal rates (blue) after 2h on stream. The KRONOClean K7050 material is shown before and after calcination at $400\degree$ C for 4 h in air prior to the grafting procedure.

⁵⁰ **References**

- ⁵¹ (1) Castner Jr., T.; Newell, G.; Holton, W.; Slichter, C. Note on the paramagnetic resonance
- ⁵² of iron in glass. *J. Chem. Phys.* **1960**, *32*, 668–673.
- ⁵³ (2) Domracheva, N.; Pyataev, A.; Manapov, R.; Gruzdev, M.; Chervonova, U.; Kolker, A.
- ⁵⁴ Structural, magnetic and dynamic characterization of liquid crystalline iron(III) Schiff
- ⁵⁵ base complexes with asymmetric ligands. *Eur. J. Inorg. Chem.* **2011**, 1219–1229.