Supporting Information

Coherent nanoscale cobalt/cobalt oxides heterostructures embedded in porous carbon for oxygen reduction reaction

Xue-Cheng Li^a, Fa-Shuang She^a, Dong Shen^c, Chao-Ping Liu^d, Li-Hua Chen^a, Yu Li^a, Zhao Deng^{a,*}, Zhen-Hua Chen^{b,*}, Hong-En Wang^{a*}

^a State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology,122 Luoshi Road, Hongshan District, Wuhan 430070, China. Email: <u>dengzhao@whut.edu.cn</u>, <u>hongenwang@whut.edu.cn</u>

^b Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China. Email: chenzhenhua@sinap.ac.cn

^c Department of Chemistry and Center Of Diamond and Advanced Films (COSDAF), City University of Hong Kong, HKSAR, China.

^d Department of Physics, City University of Hong Kong, HKSAR, China.

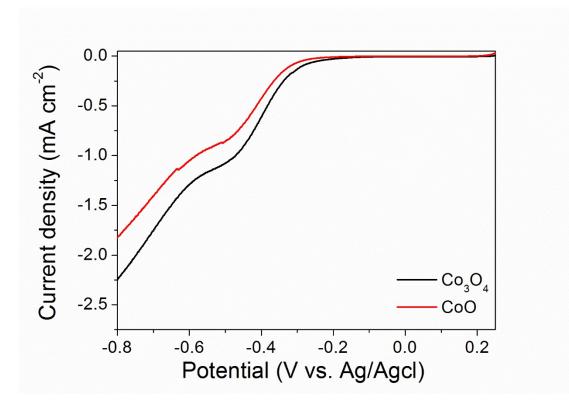
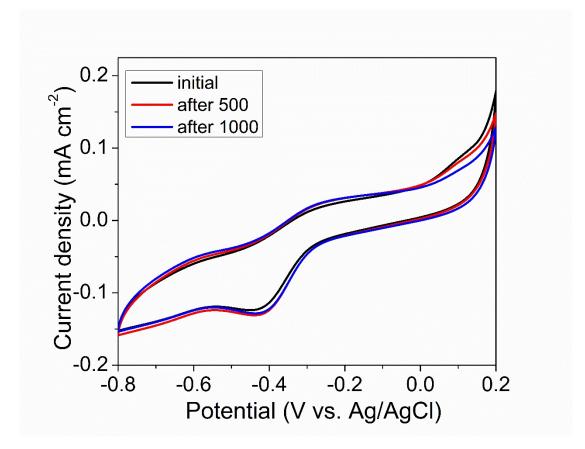



Figure S1. LSV curves of the electrodes comprised of commercial Co_3O_4 (black) and CoO (red) nanoparticles, respectively. The tests were carried out in 0.1 M O₂-saturated KOH solution at 1600 rpm with a scan rate of 5 mV s⁻¹.

Figure S2. The cyclic voltammetry (CV) curves of CoO_x -800 electrode recorded at 5 mV s⁻¹ for different cycles.