Supporting Information

Three-dimensional Flower-like NiCo₂O₄/CNT for Efficient Catalysis of Oxygen Evolution Reaction

Zhaoling Ma^a, Hao Fu^a, Cibing Gu^a, Youguo Huang^{a*}, Sijiang Hu^b, Qingyu Li^a, Hongqiang Wang^{a,b,*}

^a Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.

^b Hubei Key Laboratory for Processing and Application of Catalytic Materials,

College of Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China.

Corresponding authors

E-mail addresses:

* Hong-Qiang Wang, whq74@126.com, whq74@mailbox.gxnu.edu.cn

Fax: +86-0773-5858562

Figure S1. FTIR spectra of CNT (a), $NiCo_2O_4/CNT$ (b), $NiCo_2O_4/CNT$ -150 (c), $NiCo_2O_4/CNT$ -250 (d).

Figure S2. The corresponding elemental mappings of C, O, Co and Ni for the $NiCo_2O_4/CNT$ -150.

Figure S3. SEM of NiCo₂O₄/CNT-150 after all the electrochemical characterization.

Figure S4. XRD spectra of $NiCo_2O_4/CNT-150$ (a) before and (b) after all the electrochemical characterization.

Catalyst Material	Electrolyt e solution	Onset η(mV)	η(mV) at 10 mA/cm²	η(mV) at 100 mA/cm ²	Tafel slope (mV/dec)	Ref.
NiCo ₂ O ₄ /CNT -150	0.1 M KOH	300	340	470	129	In this work
Au/NiCo ₂ O ₄	1 М КОН	_	360	_	63	[1]
NiCo ₂ O ₄ NNs	1 М КОН	365	_	_	292	[2]
NiCo ₂ O ₄ NSs	1 М КОН	415	—	—	393	[2]
NiCo ₂ O ₄ /CNTs	1 М КОН	500	—	_	68.1	[3]
NiCo ₂ O ₄ /Graphene	0.1M KOH	550	_	_	164	[4]
NiCo ₂ O ₄ /C	1 М КОН	—	414	—	69.4	[5]
NiCo ₂ O ₄ hollow nanospheres	0.1 M KOH	220	_	_	_	[6]
NiCo ₂ O ₄ /Graphene	1 М КОН	250	313	_	35	[7]

Table S1. Performances Comparison of NiCo₂O₄/CNT -150 catalysts.

References

- [1] X. Liu, J. Liu, Y. Li, et al., Chem. Cat. Chem., 2014, 6, 2501-2506.
- [2] H. Shi, G. Zhao, J. Mater. Chem. C, 2014, 118, 25939-25946.
- [3] H. Cheng , Y. Z. Su, P. Y. Kuang, et al., J. Mater. Chem. A, 2015, 3, 19314-19321.
- [4] D. U. Lee, B. J. Kim, Z. Chen, J. Mater. Chem. A, 2013, 1, 4754-4762.
- [5] Z. Zheng, W. Gen, Y. Wang, Y. Huang, T. Qi, Int. J. Hydr. Energy, 2017, 42, 119-124.
- [6] Wang J, Fu Y, Xu Y, et al., Int. J. Hydr. Energy, 2016, 41, 8847-8854.
- [7] Aneeya K. Samantara, Swagatika Kamil, Arnab Ghosh, *Electrochim. Acta*, 2018, 263, 147-157.