Supplementary information

Reprogramming Synthetic Cells for Targeted Cancer Therapy

Boon Lim^{1,2#}, Yutong Yin^{1#}, Hua Ye^{1,2}, Zhanfeng Cui^{1,2}, Antonis Papachristodoulou¹, Wei E Huang^{1,*}

¹Department of Engineering Science, University of Oxford, Parks Road, OX1 3PJ, Oxford, UK.

²Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, OX3 7DQ, UK.

*Corresponding author: Department of Engineering Science, University of Oxford, Parks Road, OX1 3PJ, Oxford, United Kingdom. Email <u>wei.huang@eng.ox.ac.uk</u> Tel: +44 1865 283786.

[#] B.L. and Y.Y contributed equally to this work.

Table S1. Bacterial strains and plasmids used in this study.

Strains	Genotype or description	Source
<i>Escherichia coli</i> DH5α	fhuA2 lac(del)U169 phoA glnV44 Φ80'	Lab
	lacZ(del)M15 gyrA96 recA1 relA1 endA1 thi- 1 hsdR17	collection
E coli BL 21(DE3)	ful A2 [lon] omnT gal () DE3) [dcm] AbsdS	lah
		collection
E. coli K12 MDS42	fhuACDB(del) endA(del) and deletion of all IS	Lab
	and cryptic prophage ¹	collection
DH5a pNVC17	BL21(DE3): pNVC17 (for cloning)	This study
BL21(DE3) pNVC17_2	BL21(DE3): pNVC17_2 (low expression	This study
	profile)	-
BL21(DE3) pNVC43_2	BL21(DE3): pNVC43_2 (low expression	This study
	profile)	
BL21(DE3) pNVCYT_2	BL21(DE3): pNVCYT_2 (low expression	This study
	profile)	
BL21(DE3) pNVC17_3	BL21(DE3): pNVC17_3 (high expression	This study
	profile)	
BL21(DE3) pNVC43_3	BL21(DE3): pNVC43_3 (high expression	This study
	profile)	
BL21(DE3) pNVCYT_3	BL21(DE3): pNVCYT_3 (high expression	This study
	profile)	
BL21(DE3) control	BL21(DE3): proD_stGFP (high expression	This study
	profile control with stGFP)	-
BL21(DE3) pNVC17_stGFP	BL21(DE3): pNVC17_stGFP (high	I his study
	expression profile with stGFP downstream)	This study
BL21(DE3) pNVC43_STGFP	BL21(DE3): pNVC43_SIGFP (nign	i nis study
	PL 21 (DE2); pNIV(C)/T. of CED (bigh	This study
BL21(DE3) pNVCY1_SIGPP	BL21(DE3): pNVC11_SIGFP (nign	This study
	RI 21(DE2): pN//C17_cfCED + pPH12y (bigh	This study
DLZI(DL3)	expression profile with sfGEP downstream:	This study
	ICeul endonuclease expression)	
BL 21(DE3)	BI 21(DE3): $pN/C43$ sfGEP + pBH12x (high	This study
pNVC43 sfGFP ICeul	expression profile with sfGFP downstream.	The study
	ICeul endonuclease expression)	
BL21(DE3)	BL21(DE3): pNVC43 salA sfGFP + pRH12x	This study
pNVC43 SalA sfGFP	(high expression profile with sfGFP	,
	downstream; ICeul endonuclease	
	expression)	
BL21(DE3)	BL21(DE3): pNVCYT_sfGFP + pRH12x (high	This study
pNVCYT_sfGFP_ICeul	expression profile with sfGFP downstream;	
	ICeul endonuclease expression)	
BL21(DE3) pSIJ8	BL21(DE3): pSIJ8 (for recombination	This study
	engineering)	
BL21(DE3) Δ <i>minD</i>	BL21(DE3) Δ <i>minD::Kan^R</i> (for minicells	This study
	generation)	
BL21(DE3) ΔminD	BL21(DE3): pNVC17_sfGFP, Δ <i>minD::Kan^R</i>	This study
pNVC17_sfGFP	(for minicells with high expression profile with	
	stGFP downstream)	
$BL21(DE3) \Delta minD$	BL21(DE3): pNVC43_stGFP, Δ <i>minD::Kan^R</i>	I his study
pNVC43_stGFP	(for minicells with high expression profile with	
	SIGFP downstream)	

BL 21(DE3) AminD	BI 21(DE3): pNIVCYT sfGEP AminD.:Kan ^R	This study
nNVCYT sfGEP	(for minicells with high expression profile with	This study
	sfGEP downstream)	
Plasmids	sion downstreamy	
nNV/afn	Plasmid with anti-GEP nanobody attached to	A gift from
privgip	B intimin constitutively expressed by the	Dr Karon
	p-intinini, constitutively expressed by the	
	PROTIDIELEDBA_J25100 and a low strength	FOIIZZI
=NIV/C47	Anti CED nanahadu af nNV/rfn ranlaaad hu	This study
	anti CEA nanabady Cm ^B	This study
	Anti-CEA nanobody. Cm [*] .	This study
pNVC43	Anti-GFP nanobody of pivygfp replaced by	I his study
NN/047-0	another variant of anti-CEA nanobody. Cm ¹ .	-
pNVC17_2	BBa_J23106 of pNVC17 replaced by	This study
	BBa_J23105. Cm ^k .	
pNVC43_2	BBa_J23106 of pNVC43 replaced by	This study
	BBa_J23105. Cm ^ĸ .	
pNVCYT_2	Anti-CEA nanobody of pNVC17_2 replaced	This study
	by anti-spike protein nanobody. Cm ^R .	
pNVC17_3	BBa_J23106 and RBS of pNVC17 replaced	This study
	by BBa_K1741014 and BBa_K1758100,	
	respectively.	
pNVC43_3	Anti-CEA nanobody of pNVC17_3 replaced	This study
	by another anti-CEA nanobody variant. Cm ^R .	
pNVCYT_3	Anti-CEA nanobody of pNVC17_3 replaced	This study
	by anti-spike protein nanobody. Cm ^R .	
pNVC17_sfGFP	BBa_K1758100 and sfGFP cloned	This study
	downstream to the anti-CEA nanobody in	
	pNVC17_3. Cm ^R .	
pNVC43_ sfGFP	Anti-CEA nanobody of pNVC17_sfGFP	This study
	replaced by another anti-CEA nanobody	
	variant. Cm ^R .	
pNVC43_SalA_sfGFP	salA cloned upstream of sfGFP within	This study
	pNVC43_sfGFP. Cm ^R .	
pNVCYT_sfGFP	Anti-CEA nanobody of pNVC17_sfGFP	This study
	replaced by anti-spike protein nanobody.	
	Cm ^R .	
prod_sfGFP	A lab plasmid with BBa_K1741014 and	Lab
	BBa_K1758100 upstream of a <i>sfGFP</i> . Cm ^R .	collection
pJKR-L-TetR-ICeul	Plasmid with I-Ceul endonuclease controlled	3
	by TetR. Carb ^R .	
pRH12x	Plasmid with ICeul endonuclease controlled	This study
	by a crystal violet inducible promoter. Kan ^R .	
pSIJ8	Plasmid with lambda Red recombineering	4
	genes (exo, bet and gam) and a flippase	
	(FLP) recombinase. Carb ^R .	

Table S2. Primers and gene blocks used in this study.

Primers	Sequence (5' \rightarrow 3')	Part/Purpos	Plasmid
		е	
VHH-for	GAACCGGCCCAGCCGGCCGAAGTTCAAC TGGTTGAAAG	Anti-CEA nanobody	pNVC17, pNVC43,
VHH-rev	GATGAGTTTTTGTTCGGCGGCCGCGCTG CTAACTGTAACCTG		pNVC17_2, pNVC43_2

pNV-for	GCTCGAGCCGAACAAAAACTCATCTCAGA	pNVgfp	pNVC17,
	AGAGGATGCAGCTGC	backbone	pNVC43,
pNV-rev	GGCCGGCTGGGCCGGTTCCAGC		pNVC17_2,
			pNVC43_2,
			pNVCYT_2
pNV-3-	ATGATTACTCATGGTTGTTATACCCGG	pNVC17	pNVC17_3,
for		backbone	pNVC43_3,
pNV-3-	GCACACGGTCACACTGCTTC		pNVCYT_3
rev			
pNV-	GCATGGATGAGCTCTACAAAAAGCTTGAC	pNVC17 3	pNVC17 sfGF
sfGFP-	CTGTGAAGTG	backbone	P. –
for			pNVC43 sfGF
pNV-	ATGGTACCTTTCTCCTCTTTTTATGCAGCT		P.
sfGFP-	GCATCCTC		pNVCYT sfG
rev			FP
sfGFP-		efGEP	nNVC17 sfGF
for		3011	
	TTTCTACACCTCATCCATCCCATCTC		Γ , $\rho N V C 42 cf CE$
SIGFF-	TITGTAGAGCTCATCCATGCCATGTG		
iev			Γ ,
	0770007070777770770000000000000		FP
minD-	GIIGGUIGIGIIIIIUUUUGUGAGAGAA	Kanamycin	-
HR-Kan-	AGAAATCGAGTAATGCCATAACTTAGAAA	resistance	
for	AACTCATCGAGCATCAAATG	gene	
minD-	CGCTTTGACCGTTCAACCGTTAAATTGAT	cassette	-
HR-Kan-	CCCTTTTTAACAAGGAATTTCTATGAGCCA		
rev	TATTCAACGGGAAAC		
HR-	GACCTCAAGAATATCTTTACGCAACTG	Check for	-
check-for		success	
HR-	CTGTTTGTAATTGTCCTTTTAACAGCG	recombinatio	-
check-		n	
rev			
Gene bloc	ks		
VHH-	GAAGTTCAACTGGTTGAAAGCGGTGGTG	Anti-CEA nanc	bodv ⁵
C17	GTTTTGTTCAGGCAGGCGAAAGTCTGACC		5
	CTGAGCTGTACCAGCAGCACCCTGACCTT		
	TACACCGTATCGTATGGCATGGTATCGTC		
	AGGCACCGGGTAAACAGCGTGATCTGGT		
	TGCAGATATTAGCAGCGGTGATGGTCGTA		
	CCACCAATTATGCAGATTTTGCCAAAGGT		
	CGTTTTACCATTAGCCGTGACAATATCAA		
			h a ah iô
VHH-		Anti-CEA nanobody⁵	
043			
	TTTACACCGTATCGTATGGGTTGGTATCG		
	TCAGACACCGGGTAAACAGCGTGATCTG		
	GTTGCAGATATTAGCCCTGGTGATGGTAG		
	CACCAAAAACTATGCAGGTTTTGCACAGG		

	GTCGTTTTACCATTAGCCGTGATAATATCA AAAACACCGTT TACCTGCAGATGAACGATCTGAAACCGGA AGATACCGCAGTGTATTATTGTAATACCTA TGTTGCCTTTGTTGGTCGTGCACGTACCT GGGGTCAGGGCACCCAGGTTACAGTTAG CAGC	
VHH- CYT	CAGGTGCAGCTCGTGGAGACGGGGGGA GGCTTGGTGCAGCCTGGGGGGGTCTCTGA GACTCTCCTGTGCAGCCTCTGGATTCACC TTCAGTAGCGTCTACATGAACTGGGTCCG CCAGGCTCCAGGGAAGGGGCCCGAGTG GGTCTCGCGTATTAGTCCGAATAGTGGTA ATATTGGGTATACAGACTCCGTGAAGGGC CGATTCACCATCTCCAGAGACAACGCCAA GAACACACTGTATCTGCAAATGAATAACC TGAAACCTGAGGACACGGCCCTGTATTAC TGTGCGATTGGTTTGAATTTGAGTAGTAG CTCCGTTAGGGGCCAGGGGACCCAGGTC ACCGTCTCCTCA	Anti-Spike protein nanobody ⁷
proD- g10	CACAGCTAACACCACGTCGTCCCTATCTG CTGCCCTAGGTCTATGAGTGGTTGCTGGA TAACTTTACGGGCATGCATAAGGCTCGTA TAATATATTCAGGGAGACCACAACGGTTT CCCTCTACAAATAATTTTGTTTAACTTTGA ATTCAAAAGATCTTTAACTTTAAGAAGGAG ATATACAT	BBa_K1741014 and BBa_K1758100

а

Created with SnapGene® (141) AvrII SphI (181) I (181) NsiI (183) BgIII (261) NdeI (290) (5632) BssSI - BssSaI BspHI (456) ProD BfuAI - BspMI - PaqCI (685) 910_RBS (5037) Bsu36I NruI* (828) BstEII (877) StuI* (904) (4987) AgeI (4930) PflFI - Tth111I (4800) Scal PciI (1100) BbsI (1110) BclI* (1125) (4684) NcoI (4615) PasI EcoRV (1284) KasI (1324) BsaHI - NarI (1325) SfoI (1326) PluTI (1328) (4402) BsrDI pnvc17_sfgfp 5809 bp BspDI* - ClaI* (1457) (4099) **MslI** Translation 2302 2000 FLORI CsiI - SexAI* (1958) myc-tag RBS AhdI (2185) SgrAI (2259) BglI - SfiI (2296) EagI (2297) SFGFP (3442) HindIII (3434) BanII - SacI (3432) Eco53kI 3000 (3287) MfeI (3177) BstZ17I AfeI (2661) EarI (2684) BseRI (2728) (3049) MluI (3038) EcoO109I - PpuMI

Figure S1. Plasmid map of (a) pNVC17 and (b) pNVC17_sfGFP plasmids. The promoter (proD), ribosome binding site (g10_RBS) and nanobody (C17) are interchangeable with other parts listed in Table S2.

b

Figure S2. Time 0 hour (within ~5 minutes) incubation of engineered *E. coli* carrying different pNV plasmids with sfGFP (green) with two different colorectal cancer cell lines: **(a)** Caco2, a high CEA expressing cell line and **(b)** SW480, a low CEA expressing cell. Nuclei of cancer cells are stained with Hoechst dye (blue). Scale bar is $100 \,\mu$ m.

Figure S3. Time 4 hours incubation of engineered *E. coli* carrying different pNV plasmids with sfGFP (green) with two different colorectal cancer cell lines: **(a)** Caco2, a high CEA expressing cell line and **(b)** SW480, a low CEA expressing cell. Nuclei of cancer cells are stained with Hoechst dye (blue). Scale bar is 100 µm.

Figure S4. Time 8 hours incubation of engineered *E. coli* carrying different pNV plasmids with sfGFP (green) with two different colorectal cancer cell lines: **(a)** Caco2, a high CEA expressing cell line and **(b)** SW480, a low CEA expressing cell. Nuclei of cancer cells are stained with Hoechst dye (blue). Scale bar is 100 µm.

Figure S5. (a) Gel electrophoresis of PCR products from five different colonies (C1-C5) with successful *minD* knock out. The primers used were minD-HR-Kan-for and minD-HR-Kan-rev (Table S2), which anneal to the inserted Kanamycin cassette and the *minE* gene within the bacterial genome, respectively. The length of PCR product is 563 bp. The ladder used is a 1kb plus DNA ladder from NEB. (b) Overnight OD₆₀₀ reading of pre-purification culture (pre 1, 2, 3) and post-purification culture (post 1, 2, 3) of minicells. Each line represents a single biological repeat. (c) Pre-purification and post-purification minicell culture plated on LB-Kan-Cm agar for 24 hours (top), 48 hours (mid) and 72 hours (bottom) at 37 °C.

Figure S6. Time at 0 (left), 4 (mid) and 8 (right) hours incubation of engineered minicells carrying pNVC17_sfGFP or pNVCYT_sfGFP plasmids (green) with two different colorectal cancer cell lines: **(a)** Caco2, a high CEA expressing cell line and **(b)** SW480, a low CEA expressing cell. Nuclei of cancer cells are stained with Hoechst dye (blue). Scale bar is 100 µm.

Figure S7. (a) Overnight OD600 reading of SimCell pYB1 carrying pNVC43_sfGFP after two hours induction of inducer cocktail X (inducer +) or without inducer (inducer -). Each line represents a single biological repeat. (b) Induced and uninduced SimCell pYB1 culture plated on LB-Kan-Cm agar for 24 hours (top), 48 hours (mid) and 72 hours (bottom) at 37 °C.

Figure S8. 0 hour (~within 5 minutes) incubation of programmed SimCell pYB1 carrying pNVC43_sfGFP or pNVCYT_sfGFP with (+) and without (-) the addition of inducer cocktail X (green). Bacterial cells under inducer+ are genome less and non-dividing SimCells. (a) Caco2 and (b) SW480 are the high CEA expressing and low CEA expressing colorectal cancer cell lines, respectively. Nuclei were stained with Hoechst dye (blue). Scale bar is 100 µm.

Figure S9. Time 4 hours incubation of programmed SimCell pYB1 carrying pNVC43_sfGFP or pNVCYT_sfGFP with (+) and without (-) the addition of inducer cocktail X (green). Bacterial cells under inducer+ are genome less and non-dividing SimCells. (a) Caco2 and (b) SW480 are the high CEA expressing and low CEA expressing colorectal cancer cell lines, respectively. Nuclei were stained with Hoechst dye (blue). Scale bar is 100 µm.

Figure S10. 8 hours incubation of programmed SimCell pYB1 carrying pNVC43_sfGFP or pNVCYT_sfGFP with (+) and without (-) the addition of inducer cocktail X (green). Bacterial cells under inducer+ are genome less and non-dividing SimCells. (a) Caco2 and (b) SW480 are the high CEA expressing and low CEA expressing colorectal cancer cell lines, respectively. Nuclei were stained with Hoechst dye (blue). Scale bar is 100 µm.

(Please access the video here: https://1drv.ms/v/s!Atd6LwNkjPrwx158BYJ5FBiO6hxn?e=aladcC)

Movie 1. Time lapse video of Caco2 after 2 hours incubation with SimCell + pNVC43_sfGFP (top left); SimCell + pNVCYT_sfGFP (bottom left); minicell + pNVC17_sfGFP (top right); minicell + pNVCYT_sfGFP (bottom right). All cultures were washed thrice and added with fresh media supplemented with Ethidium homodimer prior to imaging. The duration of the experiment is labelled in hh:mm:ss format on the top left. SimCell and minicell are in green and the nuclei of Caco2 with compromised membrane were stained by Ethidium homodimer (red). Scale bar is 100 μ m.

References

- Pósfai, G. *et al.* Emergent Properties of Reduced-Genome Escherichia coli. *Science* 312, 1044–1046 (2006).
- 2. Kylilis, N. *et al.* Whole-Cell Biosensor with Tunable Limit of Detection Enables Low-Cost Agglutination Assays for Medical Diagnostic Applications. *ACS Sens.* **4**, 370–378 (2019).
- 3. Fan, C. *et al.* Chromosome-free bacterial cells are safe and programmable platforms for synthetic biology. *Proc. Natl. Acad. Sci.* **117**, 6752–6761 (2020).
- Jensen, S. I., Lennen, R. M., Herrgård, M. J. & Nielsen, A. T. Seven gene deletions in seven days: Fast generation of Escherichia coli strains tolerant to acetate and osmotic stress. *Sci. Rep.* 5, 17874 (2015).
- 5. Kaliberov, S. A. *et al.* Adenoviral targeting using genetically incorporated camelid single variable domains. *Lab Invest* **94**, 893–905 (2014).
- Behar, G. *et al.* Llama single-domain antibodies directed against nonconventional epitopes of tumor-associated carcinoembryonic antigen absent from nonspecific crossreacting antigen. *FEBS J.* 276, 3881–3893 (2009).
- Hanke, L. *et al.* An alpaca nanobody neutralizes SARS-CoV-2 by blocking receptor interaction. *Nat. Commun.* 11, 4420 (2020).