Supporting information to

Fabrication of TiO₂ on Porous g-C₃N₄ by ALD for Improved

Solar-driven Hydrogen Evolution

Wei-Szu Liu¹, Li-Chen Wang¹, Tzu-Kang Chin¹, Yin-Cheng Yen¹, and Tsong-Pyng

Perng*,1

¹Department of Materials Science and Engineering, National Tsing Hua University,

Hsinchu 30010, Taiwan

Fig. S1 FTIR spectra of *P*-g-C₃N₄, TiO₂, and TiO₂@*P*-g-C₃N₄ composites.

Fig. S2 HRTEM images and SAED patterns for (a) P-g-C₃N₄ and (b) Ti180-CN. The inset in (b) shows the lattice image of TiO₂ (101).

Fig. S3 TGA curves of the samples.

Fig. S4 UV-vis diffuse reflectance spectra of the samples. The inset shows the magnified absorption edges.

Fig. S5 Photocurrent density curves for P-g-C₃N₄, TiO₂, and Ti180-CN in a 0.5 M Na₂SO₄ aqueous solution under 150 W Xe lamp illumination with a solar filter.