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Supplementary Note 1 │ List of synthesis studies (reviews and meta-analyses) about the 

effect of drought on net primary production (NPP) or aboveground biomass (AGB) 

 

1. Studies covering experimental droughts only 

Gao J, Zhang L, Tang Z, Wu S (2019) A synthesis of ecosystem aboveground productivity 

and its process variables under simulated drought stress. Journal of Ecology 107: 2519-

2531. 

Li W, Li X, Zhao Y, Zheng S, Bai Y (2018) Ecosystem structure, functioning and stability 

under climate change and grazing in grasslands: current status and future prospects. Current 

Opinion in Environmental Sustainability 33: 124-135. 

Matos IS, Menor IO, Rifai SW, Rosado, BHP (2020) Deciphering the stability of grassland 

productivity in response to rainfall manipulation experiments. Global Ecology and 

Biogeography 29: 558-572. 

Orsenigo S, Mondoni A, Rossi G, Abeli T (2014) Some like it hot and some like it cold, but 

not too much: plant responses to climate extremes. Plant Ecology 215: 677-688. 

Song J, Wan S, Piao S, Knapp AK, Classen AT, Vicca S, ..., Zheng M (2019) A meta-analysis 

of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change. 

Nature Ecology & Evolution 3: 1309-1320. 

Unger S, Jongen M (2015) Consequences of changing precipitation patterns for ecosystem 

functioning in grasslands: a review. In: Lüttge U, Beyschlag W (eds) Progress in Botany 76. 

Springer, Cham, pp. 347-393. 

Wang C, Sun Y, Chen HYH, Yang J, Ruan H (2021) Meta-analysis shows non-uniform 

responses of above-and belowground productivity to drought. Science of the Total 

Environment 782: 146901. 

Wilcox KR, Shi Z, Gherardi LA, Lemoine NP, Koerner SE, Hoover DL, ..., Luo Y (2017) 

Asymmetric responses of primary productivity to precipitation extremes: a synthesis of 

grassland precipitation manipulation experiments. Global Change Biology 23: 4376-4385. 

Wu Z, Dijkstra P, Koch GW, Peñuelas J, Hungate BA (2011) Responses of terrestrial 

ecosystems to temperature and precipitation change: a meta‐ analysis of experimental 

manipulation. Global Change Biology 17: 927-942. 

Zhang F, Quan Q, Ma F, Tian D, Hoover DL, Zhou Q, Niu S (2019) When does extreme 

drought elicit extreme ecological responses? Journal of Ecology 107: 2553-2563. 

Zhang C, Xi N (2021) Precipitation changes regulate plant and soil microbial biomass via 

plasticity in plant biomass allocation in grasslands: a meta-analysis. Frontiers in Plant 

Science 12: 614968. 

 

2. Studies covering observational droughts only 

Ruppert JC, Harmoney K, Henkin Z, Snyman HA, Sternberg M, Willms W, Linstädter A 

(2015) Quantifying drylands’ drought resistance and recovery: the importance of drought 

intensity, dominant life history and grazing regime. Global Change Biology 21: 1258-1270. 

 

3. Studies covering (but not comparing) observational and experimental droughts 

Stuart-Haëntjens E, De Boeck HJ, Lemoine NP, Mänd P, Kröel-Dulay, Gy, Schmidt IK, 

Jentsch A, Stampfli A, Anderegg WRL, Bahn M, Kreyling J, Wohlgemuth T, Lloret F, 

Classen AT, Gough CM, Smith MD (2018) Mean annual precipitation predicts primary 

production resistance and resilience to extreme drought. Science of the Total Environment 

636: 360-366.  
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Supplementary Note 2 │ Results of N-weighted (replication-weighted) meta-analysis with 

log response ratio (lnRR) on the focal data set (grassland data with biomass estimates and site 

aridity index below 1) 

Table 1 │ Parameter estimates of the final minimum adequate model with the lowest AICc. 

AICc: 228.4, AIC: 232.0, R-squared: 0.091, number of data points: 158. Residual 

heterogeneity (QE) is 126.9 (DF = 154, P = 0.9458). 

 Coefficient SE z-value P-value CI lower CI upper 

Intercept -0.2768 0.0841 -3.29 0.0010 -0.4416 -0.1120 

Study type Observational -0.3120 0.1102 -2.83 0.0046 -0.5280 -0.0961 

Site aridity 0.5772 0.2588 2.23 0.0257 0.0700 1.0843 

Drought severity 0.5969 0.3059 1.95 0.0510 -0.0027 1.1965 

 

Table 2 │ ANOVA table of the final minimum adequate model with the lowest AICc. 

Variance inflation factor (VIF) is shown for the fixed effects to reveal potential 

multicollinearity. 

 numDF, denDF F-value P-value VIF 

Study type 1,75 6.68 0.0117 1.02 

Drought severity 1,75 5.87 0.0570 1.02 

Site aridity 1,75 3.74 0.0178 1.01 

 

Table 3 │ Parameter estimates of the full model including all main effects, and the interactive 

effects of study type and the other explanatory variables (drought severity, site aridity, and 

drought length). AICc: 237.9, AIC: 236.6, R-squared: 0.110, number of data points: 158. 

Residual heterogeneity (QE) is 116.8 (DF = 150, P = 0.9793). 

 Coefficient SE z-value P-value CI lower CI upper 

Intercept -0.2881 0.0784 -3.67 0.0002 -0.4418 -0.1343 

Study type Observational -0.3296 0.1017 -3.24 0.0012 -0.5290 -0.1302 

Drought severity 0.4423 0.4342 1.02 0.3083 -0.4086 1.2933 

Site aridity 0.2054 0.4034 0.51 0.6106 -0.5852 0.9960 

Drought length 0.0293 0.0393 0.74 0.4564 -0.0478 0.1063 

Study type Obs: Drought severity 0.2592 0.5890 0.44 0.6598 -0.8952 1.4137 

Study type Obs: Site aridity 0.4336 0.5099 0.85 0.3951 -0.5659 1.4331 

Study type Obs: Drought length -0.0770 0.0534 -1.44 0.1491 -0.1817 0.0276 

 

Table 4 │ ANOVA table of the full model including all main effects, and the interactive 

effects of study type and the other explanatory variables (drought severity, site aridity, and 

drought length). Variance inflation factor (VIF) is shown for the fixed effects to reveal 

potential multicollinearity. 

 numDF, denDF F-value P-value VIF 

Study type 1,79 87.29 0.0070 1.05 

Drought severity 1,71 3.83 0.0542 2.29 

Site aridity 1,71 6.72 0.0116 2.96 

Drought length 1,71 0.19 0.6671 2.04 

Study type: Drought severity 1,71 0.18 0.6693 2.31 

Study type: Site aridity 1,71 1.28 0.2621 3.11 

Study type: Drought length 1,71 1.91 0.1714 2.52 
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Supplementary Note 3 │ Results of variance-weighted meta-analysis with lnRR on a subset 

of the focal data set where variance estimates were available 

Table 1 │ Parameter estimates of the final minimum adequate model with the lowest AICc. 

AICc: 82.1, AIC: 81.8, R-squared: 0.154, number of data points: 120. Residual heterogeneity 

(QE) is 543.4 (DF = 116, P < 0.0001). 

 Coefficient SE z-value P-value CI lower CI upper 

Intercept -0.2679 0.0568 -4.71 <0.0001 -0.3793 -0.1565 

Study type Observational -0.2069 0.0862 -2.40 0.0163 -0.3758 -0.0381 

Site aridity 0.3875 0.1484 2.61 0.0090 0.0966 0.6783 

Drought severity 0.8205 0.1751 4.68 <0.0001 0.4772 1.1638 

 

Table 2 │ ANOVA table of the final minimum adequate model with the lowest AICc. 

Variance inflation factor (VIF) is shown for the fixed effects to reveal potential 

multicollinearity. 

 numDF, denDF F-value P-value VIF 

Study type 1,60 3.54 0.0647 1.03 

Drought severity 1,56 21.74 <0.0001 1.03 

Site aridity 1,56 8.68 0.0047 1.01 

 

Table 3 │ Parameter estimates of the full model including all main effects, and the interactive 

effects of study type and the other explanatory variables (drought severity, site aridity, and 

drought length). AICc: 89.1, AIC: 87.4, R-squared: 0.183, number of data points: 120. 

Residual heterogeneity (QE) is 501.7 (DF = 112, P < 0.0001). 

 Coefficient SE z-value P-value CI lower CI upper 

Intercept -0.2627 0.0553 -4.75 <0.0001 -0.3711 -0.1542 

Study type Observational -0.2209 0.0871 -2.54 0.0112 -0.3915 -0.0502 

Drought severity 0.7258 0.1885 3.85 0.0001 0.3563 1.0953 

Site aridity 0.3665 0.1795 2.04 0.0411 0.0148 0.7182 

Drought length -0.0143 0.0221 -0.65 0.5175 -0.0577 0.0290 

Study type Obs: Drought severity 0.5438 0.4879 1.12 0.2650 -0.4124 1.5000 

Study type Obs: Site aridity -0.0355 0.3234 -0.11 0.9126 -0.6693 0.5984 

Study type Obs: Drought length 0.0269 0.0388 0.70 0.4877 -0.0492 0.1031 

 

Table 4 │ ANOVA table of the full model including all main effects, and the interactive 

effects of study type and the other explanatory variables (drought severity, site aridity, and 

drought length). Variance inflation factor (VIF) is shown for the fixed effects to reveal 

potential multicollinearity. 

 numDF, denDF F-value P-value VIF 

Study type 1,59 3.56 0.0642 1.16 

Drought severity 1,59 21.82 <0.0001 1.24 

Site aridity 1,53 8.67 0.0048 1.55 

Drought length 1,53 0.001 0.9749 1.67 

Study type: Drought severity 1,53 1.51 0.2245 1.50 

Study type: Site aridity 1,53 0.09 0.7717 1.74 

Study type: Drought length 1,59 0.45 0.5048 1.87 
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Supplementary Note 4 │ Results of unweighted meta-analysis with lnRR on the focal data 

set (grassland data with biomass estimates and site aridity index below 1) 

Table 1 │ Parameter estimates of the final minimum adequate model with the lowest AICc. 

AICc: 327.0, AIC: 330.5, R-squared: 0.017, number of data points: 159. Residual 

heterogeneity (QE) is 32.3 (DF = 157, P = 1). 

 Coefficient SE z-value P-value CI lower CI upper 

Intercept -0.3249 0.1155 -2.81 0.0049 -0.5513 -0.0986 

Study type Observational -0.2644 0.1589 -1.66 0.0961 -0.5757 0.0470 

 

Table 2 │ ANOVA table of the final minimum adequate model with the lowest AICc. 

 numDF, denDF F-value P-value 

Study type 1,78 2.77 0.1001 

 

Table 3 │ Parameter estimates of the full model including all main effects, and the interactive 

effects of study type and the other explanatory variables (drought severity, site aridity, and 

drought length). AICc: 340.6, AIC: 339.4, R-squared: 0.036, number of data points: 159. 

Residual heterogeneity (QE) is 29.2 (DF = 151, P = 1). 

 Coefficient SE z-value P-value CI lower CI upper 

Intercept -0.3187 0.1188 -2.68 0.0073 -0.5515 -0.0858 

Study type Observational -0.2869 0.1641 -1.75 0.0804 -0.6085 0.0347 

Drought severity 0.4387 0.7136 0.61 0.5387 -0.9599 1.8372 

Site aridity 0.2725 0.5986 0.46 0.6490 -0.9007 1.4457 

Drought length 0.0166 0.0503 0.03 0.7419 -0.0821 0.1153 

Study type Obs: Drought severity 0.0608 1.0453 0.06 0.9536 -1.9879 2.1095 

Study type Obs: Site aridity 0.3993 0.8249 0.48 0.6284 -1.2175 2.0161 

Study type Obs: Drought length -0.0181 0.0782 -0.23 0.8165 -0.1714 0.1351 

 

Table 4 │ ANOVA table of the full model including all main effects, and the interactive 

effects of study type and the other explanatory variables (drought severity, site aridity, and 

drought length). Variance inflation factor (VIF) is shown for the fixed effects to reveal 

potential multicollinearity. 

 numDF, denDF F-value P-value VIF 

Study type 1,79 2.77 0.1004 1.07 

Drought severity 1,72 0.91 0.3434 1.99 

Site aridity 1,72 1.81 0.1827 2.31 

Drought length 1,72 0.03 0.8575 1.88 

Study type: Drought severity 1,72 0.01 0.9332 2.05 

Study type: Site aridity 1,72 0.30 0.5875 2.48 

Study type: Drought length 1,72 0.05 0.8172 2.00 
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Supplementary Note 5 │ Results of the separate N-weighted meta-analysis with lnRR on the 

data that were left out from the focal data set (shrublands, grasslands with cover estimates 

and/or site aridity index exceeding 1) 

Table 1 │ Parameter estimates of the model with study type as a single explanatory variable. 

AICc: 111.2, AIC: 110.9, R-squared: 0.04, number of data points: 80. Residual heterogeneity 

(QE) is 39.6 (DF = 78, P = 0.9999). 

 Coefficient SE z-value P-value CI lower CI upper 

Intercept -0.2532 0.1090 -2.32 0.0202 -0.4670 -0.0395 

Study type Observational -0.2716 0.1274 -2.13 0.0330 -0.5214 -0.0219 

 

Table 2 │ ANOVA table of the model with study type as a single explanatory variable. 

 numDF, denDF F-value P-value 

Study type 1,34 4.43 0.0427 
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Supplementary Note 6 │ Results of the comparison of site aridity, drought length, drought 

severity, and aboveground biomass (biomass data for non-drought year(s) in observational 

studies and for control plots in experimental studies) between the two study types of the focal 

data set (grassland data with biomass estimates and site aridity index below 1) 

Table 1 │ Mean and standard error of the mean (SE) of site aridity, drought length, drought 

severity, and aboveground biomass for the two study types (number of data points: 75 

experimental and 84 observational). 

 Mean SE 

Study type Experimental Observational Experimental Observational 

Site aridity 0.356 0.369 0.0225 0.0229 

Drought length (years) 2.750 1.950 0.2670 0.2150 

Drought severity -0.386 -0.337 0.0188 0.0163 

Biomass (g m
-2

) 249.1 257.4 34.32 18.57 

 

Table 2 │ Parameter estimates of the beta regression model used for the comparison of site 

aridity between the two study types with logit link function. 

 Coefficient SE z-value P-value 

Intercept -0.5322 0.1349 -3.95 <0.0001 

Study type Obs -0.1788 0.1745 -1.02 0.3060 

 

Table 3 │ Parameter estimates of the generalized mixed-effects model used for the 

comparison of drought length between the two study types with Poisson distribution and log 

link function. 

 Coefficient SE z-value P-value 

Intercept 0.8665 0.1238 7.00 <0.0001 

Study type Obs -0.3828 0.1743 -2.20 0.0280 

 

Table 4 │ Parameter estimates of the linear mixed-effects model used for the comparison of 

drought severity between the two study types. 

 Coefficient SE DF t-value P-value 

Intercept -0.3824 0.0239 79 -15.98 <0.0001 

Study type Obs 0.0271 0.0322 78 0.84 0.4031 

 

Table 5 │ Parameter estimates of the linear mixed-effects model used for the comparison of 

aboveground biomass between the two study types. Biomass data were log-transformed to 

fulfil model assumptions. 

 Coefficient SE DF t-value P-value 

Intercept 5.1811 0.1204 79 43.03 <0.0001 

Study type Obs 0.0927 0.1633 78 0.57 0.5718 
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Supplementary Note 7 │ Results of the tests for detecting publication bias on the focal data 

set (grassland data with biomass estimates and site aridity index below 1) 
 

Table 1 │ Results of the fail-safe N calculation using the Rosenberg method. 
 

 Experimental Observational Whole focal data set 

Fail-safe N 373 3202 6472 

Significance level < 0.0001 < 0.0001 < 0.0001 

 

Table 2 │ Results of the Egger’s regression test for funnel plot asymmetry based on N-

weighted (replication-weighted) meta-analytic model with log response ratio (lnRR). 
 

 Experimental Observational Whole focal data set 

z-value -0.1474 0.3173 1.1383 

P-value 0.8828 0.7510 0.2550 

 

Fig. 1 │ Funnel plot of N-weighted meta-analytic model with lnRR (focal meta-analysis) on 

the experimental studies (number of data points: 75). 

 

Fig. 2 │ Funnel plot of N-weighted meta-analytic model with lnRR (focal meta-analysis) on 

the observational studies (number of data points: 83). 
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Fig. 3 │ Funnel plot of N-weighted meta-analytic model with lnRR (focal meta-analysis) on 

the whole focal data set (number of data points: 158). 
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Supplementary Note 8 │ Results of N-weighted (replication-weighted) meta-analysis with 

lnRR on the experimental data points of the focal data set (grassland data with biomass 

estimates and site aridity index below 1) with treatment size (i.e. rainout shelter area, or if it 

was not reported in the paper, the experimental plot size) as a single explanatory variable 

 

Table 1 │ Parameter estimates of the model (number of data points: 75). Residual 

heterogeneity (QE) is 33.1 (DF = 73, P = 1). 

 Coefficient SE z-value P-value CI lower CI upper 

Intercept -0.3316 0.0673 -4.93 <0.0001 -0.4636 -0.1997 

Treatment size -0.0008 0.0007 -1.17 0.2415 -0.0021 0.0005 

 

Table 2 │ ANOVA table of the model. 

 numDF, denDF F-value P-value 

Treatment size 1,33 1.34 0.2562 
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Supplementary Figure 1 │ PRISMA flow diagram describing the steps of selecting articles 

for inclusion in the meta-analysis 
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Supplementary Note 9 │ List of studies found in the literature search. The number of the 

paper corresponds to the study ID in the table of collected data (available in Figshare: 

https://doi.org/10.6084/m9.figshare.17881073). Shaded studies at the end of the list were not 

included in the focal meta-analysis, but were included in a separate replication-weighted 

meta-analysis (see Methods for details) 

1. Abrams MD, Knapp AK, Hulbert LC (1986) A ten‐ year record of aboveground 

biomass in a Kansas tallgrass prairie: effects of fire and topographic position. American 

Journal of Botany 73: 1509-1515. 

2. Aires LMI, Pio CA, Pereira JS (2008) Carbon dioxide exchange above a 

Mediterranean C3/C4 grassland during two climatologically contrasting years. Global Change 

Biology 14: 539-555. 

3. Alon M, Sternberg M (2019) Effects of extreme drought on primary production, 

species composition and species diversity of a Mediterranean annual plant community. 

Journal of Vegetation Science 30: 1045-1055. 

4. Arredondo T, Garcìa-Moya E, Huber-Sannwald E, Loescher HW, Delgado-Balbuena 

J, Luna-Luna M (2016) Drought manipulation and its direct and legacy effects on productivity 

of a monodominant and mixed-species semi-arid grassland. Agricultural and Forest 

Meteorology 223: 132-140. 

5. Baoyin T, Li FY, Bao Q, Minggagud H, Zhong Y (2014) Effects of mowing regimes 

and climate variability on hay production of Leymus chinensis (Trin.) Tzvelev grassland in 

northern China. The Rangeland Journal 36: 593-600. 

6. Bat-Oyun T, Shinoda M, Cheng Y, Purevdorj Y (2016) Effects of grazing and 

precipitation variability on vegetation dynamics in a Mongolian dry steppe. Journal of Plant 

Ecology 9: 508-519. 

7. Briggs JM, Knapp AK (1995) Interannual variability in primary production in tallgrass 

prairie: climate, soil moisture, topographic position, and fire as determinants of aboveground 

biomass. American Journal of Botany 82: 1024-1030. 

8. Brown JR, Archer S (1999) Shrub invasion of grassland: recruitment is continuous 

and not regulated by herbaceous biomass or density. Ecology 80: 2385-2396. 

9. Byrne KM, Lauenroth WK, Adler PB (2013) Contrasting effects of precipitation 

manipulations on production in two sites within the central grassland region, USA. 

Ecosystems 16: 1039-1051. 

10. Canarini A, Mariotte P, Ingram L, Merchant A, Dijkstra FA (2018) Mineral-associated 

soil carbon is resistant to drought but sensitive to legumes and microbial biomass in an 

Australian grassland. Ecosystems 21: 349-359. 

11. Chen J, Shao C, Jiang S, Qu L, Zhao F, Dong G (2019) Effects of changes in 

precipitation on energy and water balance in a Eurasian meadow steppe. Ecological Processes 

8: 17. 

12. Cherwin K, Knapp A (2012) Unexpected patterns of sensitivity to drought in three 

semi-arid grasslands. Oecologia 169: 845-852. 

13. Chieppa J, Nielsen UN, Tissue DT, Power SA (2019) Drought and phosphorus affect 

productivity of a mesic grassland via shifts in root traits of dominant species. Plant and Soil 

444: 457-473. 

14. Chimner RA, Welker JM, Morgan J, LeCain D, Reeder J (2010) Experimental 

manipulations of winter snow and summer rain influence ecosystem carbon cycling in a 

mixed-grass prairie, Wyoming, USA. Ecohydrology 3: 284-293. 

15. Coupe MD, Stacey JN, Cahill Jr JF (2009) Limited effects of above‐ and 

belowground insects on community structure and function in a species‐ rich grassland. 

Journal of Vegetation Science 20: 121-129. 

https://doi.org/10.6084/m9.figshare.17881073
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16. Czóbel Sz, Szirmai O, Németh Z, Gyuricza Cs, Házi J, Tóth A, Schellenberger J, Vasa 

L, Penksza K (2012) Short-term effects of grazing exclusion on net ecosystem CO2 exchange 

and net primary production in a Pannonian sandy grassland. Notulae Botanicae Horti 

Agrobotanici Cluj-Napoca 40: 67-72. 

17. Denton EM, Dietrich JD, Smith MD, Knapp AK (2017). Drought timing differentially 

affects above-and belowground productivity in a mesic grassland. Plant Ecology 218: 317-

328. 

18. Dong G, Guo J, Chen J, Sun G, Gao S, Hu L, Wang Y (2011) Effects of spring 

drought on carbon sequestration, evapotranspiration and water use efficiency in the Songnen 

meadow steppe in northeast China. Ecohydrology 4: 211-224. 

19. Erichsen-Arychuk C, Bork EW, Bailey AW (2002) Northern dry mixed prairie 

responses to summer wildlife and drought. Journal of Range Management 164-170. 

20. Evans SE, Burke IC (2013) Carbon and nitrogen decoupling under an 11-year drought 

in the shortgrass steppe. Ecosystems 16: 20-33. 

21. Fahnestock JT, Detling JK (1999) Plant responses to defoliation and resource 

supplementation in the Pryor Mountains. Journal of Range Management 263-270. 

22. Fay PA, Blair JM, Smith MD, Nippert JB, Carlisle JD, Knapp AK (2011) Relative 

effects of precipitation variability and warming on tallgrass prairie ecosystem function. 

Biogeosciences 8: 3053-3068. 

23. February EC, Higgins SI, Bond WJ, Swemmer L (2013) Influence of competition and 

rainfall manipulation on the growth responses of savanna trees and grasses. Ecology 94: 

1155-1164. 

24. Fiala K, Tůma I, Holub P (2011) Effect of nitrogen addition and drought on above-

ground biomass of expanding tall grasses Calamagrostis epigejos and Arrhenatherum elatius. 

Biologia 66: 275-281. 

25. Flanagan LB, Adkinson AC (2011) Interacting controls on productivity in a northern 

Great Plains grassland and implications for response to ENSO events. Global Change Biology 

17: 3293-3311. 

26. Flanagan LB, Sharp EJ, Letts MG (2013) Response of plant biomass and soil 

respiration to experimental warming and precipitation manipulation in a Northern Great 

Plains grassland. Agricultural and Forest Meteorology 173: 40-52. 

27. Frank DA (2007) Drought effects on above- and belowground production of a grazed 

temperate grassland ecosystem. Oecologia 152: 131-139. 

28. Gamoun M (2016) Rain use efficiency, primary production and rainfall relationships 

in desert rangelands of Tunisia. Land Degradation and Development 27: 738-747. 

29. Gao Y, Giese M, Brueck H, Yang H, Li Z (2013) The relation of biomass production 

with leaf traits varied under different land-use and precipitation conditions in an Inner 

Mongolia steppe. Ecological Research 28: 1029-1043. 

30. Griffin-Nolan RJ, Carroll CJW, Denton EM, Johnston MK, Collins SL, Smith MD, 

Knapp AK (2018) Legacy effects of a regional drought on aboveground net primary 

production in six central US grasslands. Plant Ecology 219: 505-515. 

31. Haddad NM, Tilman D, Knops JMH (2002) Long‐ term oscillations in grassland 

productivity induced by drought. Ecology Letters 5: 110-120. 

32. Haferkamp MR, Heitschmidt RK, Karl MG (1997) Influence of Japanese brome on 

western wheatgrass yield. Journal of Range Management 50: 44-50. 

33. Harrison SP, LaForgia ML, Latimer AM (2018) Climate‐ driven diversity change in 

annual grasslands: Drought plus deluge does not equal normal. Global Change Biology 24: 

1782-1792. 

34. Hein L (2006) The impacts of grazing and rainfall variability on the dynamics of a 

Sahelian rangeland. Journal of Arid Environments 64: 488-504. 
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35. Heitschmidt RK, Vermeire LT (2006) Can abundant summer precipitation counter 

losses in herbage production caused by spring drought? Rangeland Ecology and Management 

59: 392-399. 

36. Heitschmidt RK, Dowhower SL, Walker JW (1987) 14- vs. 42-paddock rotational 

grazing: aboveground biomass dynamics, forage production, and harvest efficiency. Journal 

of Range Management: 216-223. 

37. Heitschmidt RK, Haferkamp MR, Karl MG, Hild AL (1999) Drought and grazing: I. 

Effects on quantity of forage produced. Journal of Range Management 2: 440-446. 

38. Heitschmidt RK, Klement KD, Haferkamp MR (2005) Interactive effects of drought 
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Supplementary Figure 2 │ Geographic setting of the studies included in the meta-analysis. 

EXP stands for experimental studies, and OBS stands for observational studies. Focal-EXP 

and Focal-OBS studies were included in the focal analysis, while Additional-EXP and 

Additional-OBS studies were left out of the focal analysis for various methodological reasons, 

but were analysed separately (See Methods for details). This map was created using ArcGIS
®
 

software by Esri. ArcGIS
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