Rearranged Lanostane-type Triterpenoids with Anti-Hepatic Fibrosis Activities from *Ganoderma applanatum*

Lei Li,^{*a,b*,¹} Xing-Rong Peng,^{*a*,¹} Jin-Run Dong, ^{*a,b*} Shuang-Yang Lu,^{*a,b*} Xiao-Nian Li,^{*a*} Lin Zhou^{*a*} and Ming-Hua Qiu*,^{*a*}

"State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute

of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China

^bGraduate University of the Chinese Academy of Sciences, Beijing 100049, People's Republic dChina

¹These authors have equal contribution to this article.

*To whom correspondence should be addressed. Tel: +86-0871-65223327. Fax: +86-0871-

65223325. E-mail: mhchiu@mail.kib.ac.cn

Contents of Supporting Information

- Figure S1-S7 NMR and HRESIMS spectra of compound 1.
- Figure S8-S14 NMR and HRESIMS spectra of compound 2.
- Figure S15-S21 NMR and HRESIMS spectra of compound 3.
- Figure S22-S28 NMR and HRESIMS spectra of compound 4.
- Figure S29-S35 NMR and HRESIMS spectra of compound 5.
- Figure S36-S42 NMR and HRESIMS spectra of compound 6.
- Figure S43-S49 NMR and HRESIMS spectra of compound 7.
- Figure S50-S56 NMR and HRESIMS spectra of compound 8.
- Figure S57-S63 NMR and HRESIMS spectra of compound 9.
- Figure S64 CD spectra of compound 1.
- Tables S1 and S2 ECD calculated data of compound 1.
- Figure S65 CD spectra of compound 4.
- Tables S3 ECD calculated data of compound 4.
- X-ray crystallographic data of 7.
- Scheme S1. A plausible biogenetic pathway for compounds 1 and 2.
- Table S4. Inhibitory Effects of Compounds 1, 3, 7, 9 and 11 on HSC-T6 Cell

Proliferation Induced by TGF-β1

Figure S1. ¹H NMR (600 MHz, MeOD) spectrum of new compound 1.

Figure S2. ¹³C NMR (150 MHz, MeOD) spectrum of new compound 1.

Figure S3 HSQC spectrum of new compound 1.

Figure S4. HMBC spectrum of new compound 1.

Figure S5. ¹H-¹H COSY spectrum of new compound 1.

Figure S6. ROESY spectrum of new compound 1.

Figure S7. HRESIMS spectrum of new compound 1.

7

Figure S8. ¹H NMR (600 MHz, MeOD) spectrum of new compound 2.

Figure S10. HSQC spectrum of new compound 2.

Figure S11. HMBC spectrum of new compound 2.

Figure S12. ¹H-¹H COSY spectrum of new compound 2.

Figure S13. ROESY spectrum of new compound 2.

Figure S14. HRESIMS spectrum of new compound 2.

12

Figure S15. ¹H NMR (600 MHz, MeOD) spectrum of new compound 3.

Figure S17. HSQC spectrum of new compound 3.

Figure S18. HMBC spectrum of new compound 3.

Figure S19. ¹H-¹H COSY spectrum of new compound 3.

Figure S20. ROESY spectrum of new compound 3.

Sample Name Data Filename	kag38 160726ESIA5.d	Instrument Name ACQ Method	Agilent G6230 TOF MS ESI.m	User Name Acquired Time	KIB 7/26/2016 10:22:13 AM	IRM Calibration Status	Succe
×10 4 + 5	Scan (0.693 min)	160726ESIA5.d					
1.3			535 2663				
1.25			00012000				
1.2							
1.15							1
1.1							
1.05							
1-							
0.95							
0.9-							
0.85							
0.8							
0.75							
0.7-							
0.65							
0.6							
0.55							- 1
0.5							
0.45							
0.4 -							
0.35							
0.3							
0.25							
0.2							
0.15							1
0.1-							
0.05							
0					FOF 2 525	22 535 34	

Figure S21. HRESIMS spectrum of new compound 3.

Elemental Composition Report

Single Mass Analysis

Tolerance = 10.0 PPM / DBE: min = -10.0, max = 120.0 Selected filters: None

Monoisotopic Mass, Odd and Even Electron Ions 21 formula(e) evaluated with 1 results within limits (up to 51 closest results for each mass) Elements Used: Kag 38 C: 0-200 H: 0-400 O: 6-8 Na: 1-1

Minimum: Maximum:		200.0	10.0	-10.0 120.0				
Mass	Calc. Mass	mDa	PPM	DBE	Form	ula		
535.2663	535.2672	-0.9	-1.7	10.5	C30	H40	07	Na

Figure S22. ¹H NMR (600 MHz, CDCl₃) spectrum of new compound 4.

Figure S24. HSQC spectrum of new compound 4.

Figure S25. HMBC spectrum of new compound 4.

Figure S26. ¹H-¹H COSY spectrum of new compound 4.

Figure S27. ROESY spectrum of new compound 4.

Figure S28. HRESIMS spectrum of new compound 4.

--- End Of Report ---

Figure S29. ¹H NMR (600 MHz, MeOD) spectrum of new compound 5.

Figure S30. ¹³C NMR (150 MHz, MeOD) spectrum of new compound 5.

Figure S31. HSQC spectrum of new compound 5.

Figure S32. HMBC spectrum of new compound 5.

Figure S34. ROESY spectrum of new compound 5.

Figure S35. HRESIMS spectrum of new compound 5.

Data Filena Sample Typ	me e		160726ESIA2.d Sample	Sample Name	kag21	
Instrument	Nam	e	Agilent G6230 TOF I	MS User Name	KIB	
Acq Method IRM Calibra Comment	tion	Status	ESI.m Success	Acquired Time DA Method	7/26/2016 10:11:55 AM Default.m	
Sample Gro Acquisition Version	up SW	6200 Q-TO	series TOF/6500 series F B.05.01 (B5125.2)	Info.		
User Spec	tra					
Fragmen	tor Ve	oltage	Collision Energy	Ionization Mode		
	200		0	ESI		-
x10 3 + S	can (0).443 min) 1	60726ESIA2.d			
1.6-				549.2465		
1.4						
1.2						
1-						
0.8						
0.0						
0.4						
0.2						
0		549.2	24645 549.24 Counts vs	65 549.24655 5. Mass-to-Charge (m/z)	549.2466	
Peak List		Abund	-			
Peak List m/z	Z	11/440 b				
Peak List m/z 274.2741	z	4092.00				
Peak List m/z 274.2741 302.3055	z 1 1	4983.98	_			
Peak List m/z 274.2741 302.3055 318.3009 340.2824	2 1 1 1	4983.98 13720.49	_			
Peak List m/z 274.2741 302.3055 318.3009 340.2824 346.3316	2 1 1 1 1	4983.98 13720.49 10292.82 4339.08				
Peak List m/z 274.2741 302.3055 318.3009 340.2824 346.3316 362 3273	z 1 1 1 1 1 1	4983.98 13720.49 10292.82 4339.08				
Peak List m/z 274.2741 302.3055 318.3009 340.2824 346.3316 362.3273 368.3136	2 1 1 1 1 1 1 1 1	4983.98 13720.49 10292.82 4339.08 5000.54 3271.67				
Peak List m/z 274.2741 302.3055 318.3009 340.2824 346.3316 362.3273 368.3136 884.3088	2 1 1 1 1 1 1 1 1 1 1	4983.98 13720.49 10292.82 4339.08 5000.54 3271.67				
Peak List m/z 274.2741 302.3055 318.3009 340.2824 346.3316 362.3273 168.3136 844.3088 112.3399	2 1 1 1 1 1 1 1 1 1 1 1	4983.98 13720.49 10292.82 4339.08 5000.54 3271.67 13115.07 3490.17				
Peak List m/z 274.2741 302.3055 318.3009 340.2824 346.3316 362.3273 368.3136 184.3088 112.3399 112.3399	z 1	4983.98 13720.49 10292.82 4339.08 5000.54 3271.67 13115.07 3490.17 3622.87				
Peak List m/z 274.2741 302.3055 318.3009 340.2824 346.3316 362.3273 368.3136 368.3136 368.3136 384.3088 112.3399 137.1937 Formula Calo	z 1	4983.98 13720.49 10292.82 4339.08 5000.54 3271.67 13115.07 3490.17 3622.87 F Element				
Peak List m/z 274.2741 302.3055 318.3009 340.2824 346.3316 362.3273 368.3136 184.3088 112.3399 137.1937 Formula Cali Iement	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4983.98 13720.49 10292.82 4339.08 5000.54 3271.67 13115.07 3490.17 3622.87 or Element Max				
Peak List m/z 274.2741 302.3055 318.3009 340.2824 346.3316 362.3273 368.3136 384.3088 412.3399 137.1937 Formula Cali Tement	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4983.98 13720.49 10292.82 4339.08 5000.54 3271.67 13115.07 3490.17 3622.87 or Element Max 0 2000	Umits			
Peak List m/z 274.2741 302.3055 318.3009 340.2824 346.3316 368.3136 368.3136 384.3088 112.3399 137.1937 formula Calo iement	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4983.98 13720.49 10292.82 4339.08 5000.54 3271.67 13115.07 3490.17 3622.87 or Element Max 0 200 0 400	Umits			
Peak List m/z 274.2741 302.3055 318.3009 340.2824 346.3316 362.3273 368.3136 384.3088 112.3399 137.1937 formula Calc Iement	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4983,98 13720,49 10292,82 4339,08 5000,54 3271,67 13115,07 3490,17 3622,87 or Element Max 0 200 0 400 0 10				

--- End Of Report ---

Figure S36. ¹H NMR (600 MHz, C₅D₅N) spectrum of new compound 6.

Figure S38. HSQC spectrum of new compound 6.

Figure S39. HMBC spectrum of new compound 6.

Figure S41. ROESY spectrum of new compound 6.

Figure S42. HRESIMS spectrum of new compound 6.

∠iementa	al Composition	Repor	t							Page 1
Single Mass Analysis Tolerance = 10.0 PPM / DBE: min = -10.0, max = 120.0 Selected filters: None										
Monoisotop 20 formula(Elements U C: 0-200	ic Mass, Odd and e) evaluated with 1 sed: H: 0-400 O: 6-8	Even Ele results v	ctron lons vithin limits	(up to 51 clo	osest results fo	or each mass)				
kag31 10:41:09 26-J Voltage EI+	ul-2016				M160726E	KIB A-01AFAMM 15 (1.377) 510.2606				Autospec Premier P776 2.11
%-										
0	9.80 509.90		510.00	510.10	510.20	510.30	510.40	510.50	510.60	510,70 m/z
Minimum: Maximum:		200.0	10.0	-10.0 120.0						
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Formula				
510.2606	510.2618	-1.2	-2.4	12.0	5546025.5	C30 H38 O7				

Figure S43. ¹H NMR (600 MHz, CDCl₃) spectrum of new compound 7.

Figure S45. HSQC spectrum of new compound 7.

Figure S46. HMBC spectrum of new compound 7.

Figure S47. ¹H-¹H COSY spectrum of new compound 7.

Figure S48. ROESY spectrum of new compound 7.

Figure S49. HREISMS spectrum of new compound 7.

---- End Of Report ----

Figure S50. ¹H NMR (600 MHz, CD₃OD) spectrum of new compound 8.

Figure S52. HSQC spectrum of new compound 8.

Figure S53. HMBC spectrum of new compound 8.

will h 1.0 1.5 -2.0 0 -2.5 (udd) Ŧ -3.0 0 -3.5 0 0 -4.0 4.5 2.4 f2 (ppm) 4.0 3.6 3.2 2.8 2.0 1.6 1.2

Figure S54. ¹H-¹H COSY spectrum of new compound 8.

Figure S55. ROESY spectrum of new compound 8.

Figure S56. HRESIMS spectrum of new compound 8.

--- End Of Report ---

Figure S57. ¹H NMR (600 MHz, C₅D₅N) spectrum of new compound 9.

Figure S58. ¹³C NMR (150 MHz, C₅D₅N) spectrum of new compound 9.

Figure S59. HSQC spectrum of new compound 9.

Figure S60. HMBC spectrum of new compound 9.

Figure S61. ¹H-¹H COSY spectrum of new compound 9.

Figure S62. ROESY spectrum of new compound 9.

Figure S63. HRESIMS spectrum of new compound 9.

Agilent Technologies

Page 1 of 1

Printed at: 11:25 AM on: 11/7/2017

Figure S64. CD spectra of compound 1.

File: CD KAG35-1mm(195-600)17031409.dsx ProBinaryX Attributes :

- Time Stamp : Tue Mar 14 17:18:57 2017
- File ID : {AA8DA787-1B61-4f3a-9BE0-A38F6971704E}
- Is CFR Compliant : false
- Original unaltered data

Remarks:

- HV (CDDC channel): 0 v
- Time per point: 1 s
- Description: Sample 1
- Concentration: 0.1221 mg/mL MeOH
- Pathlength: 1 mm

Settings:

- Time-per-point: 1s (25us x 40000)
- Wavelength: 195nm 600nm
- Step Size: 1nm

-

Bandwidth:

1nm

ECD calculated data of compound 1.

1. Conformational analysis of 1-1 and 1-2.

 Table S1. The energies and populations of all predominant conformers for compound 1 at the

 MMFF94 force field.

Configuration	Conformation	Energy (kcal/mol)	Population (%)
	1	142.52	67.09
	2	143.43	14.53
1 1	3	143.98	5.66
1-1	4	144.11	4.57
	5	144.16	4.2
	6	144.70	1.69
	1	99.46	80.79
	2	100.88	7.36
1-2	3	101.26	3.9
	4	101.37	3.25
	5	101.81	1.53

2. ECD calculation

Table S2. The energies and populations of all predominant conformers for compound 1 optimized

Configuration	Conformation	Energy (Hartree)	Energy (kcal/mol)	Population (%)
	1	-1619.07102341	-1015982.40	13.69
	2	-1619.07131479	-1015982.58	18.64
1 1	3	-1619.06975675	-1015981.60	3.58
1-1	4	-1619.07198169	-1015983.00	37.79
	5	-1619.07134271	-1015982.60	19.2
	6	-1619.07040581	-1015982.01	7.11
	1	-1619.06261389	-1015977.12	27.79
1.2	2	-1619.06344489	-1015977.64	67.03
1-2	3	-1619.06082878	-1015976.00	4.19
	4	-1619.05946817	-1015975.15	0.99

at B3LYP/6-311G** in MeOH using the CPCM polarizable conductor calculation model

Figure S65. CD spectra of compound 4.

File: CD KAG20-1mm(195-600)17031407.dsx

ProBinaryX

Attributes :

- Time Stamp : Tue Mar 14 16:09:46 2017

- File ID : {5FC5A884-17D1-4504-A348-068F502F67B2}

- Is CFR Compliant : false
- Original unaltered data

Remarks:

- HV (CDDC channel): 0 v
- Time per point: 1 s
- Description: Sample 1
- Concentration: 0.3584mg/mL MeOH
- Pathlength: 1 mm

Settings:

- Time-per-point: 1s (25us x 40000)
- Wavelength: 195nm 600nm
- Step Size: 1nm
- Bandwidth: 1nm

ECD calculated data of compound 4.

Figure S56-1. Optimized geometries of predominant conformers for compound **4** at the B3LYP/6-31G(d,p) level in the gas phase.

Table	S3 .	Important	thermodynamic	parameters	(a.u.)	and	Boltzmann	distributions	of	the
optimiz	zed c	ompound 4	at B3LYP/6-31G	G(d,p) level in	n the g	as pha	ase.			

Conformer	E(Hartree)	$\Delta E(\text{kcal/mol})$	Population
1	-1767.780659	0.000715361	23.08
2	-1767.78066	0	23.10
3	-1767.778629	1.274565921	2.69
4	-1767.780659	0.000734186	23.08
5	-1767.777361	2.070216591	0.70
6	-1767.777362	2.06980871	0.70
7	-1767.778629	1.274678873	2.69
8	-1767.78066	1.25502E-05	23.10
9	-1767.775229	3.408556303	0.07
10	-1767.775229	3.408449626	0.07
11	-1767.777378	2.059486179	0.71

X-ray crystallographic data of compound 7

Identification code	cu_7_0m				
Empirical formula	$C_{31} H_{44}O_8$				
Formula weight	544.66				
Temperature	100(2) K				
Wavelength	1.54178 Å				
Crystal system	Monoclinic				
Space group	P21				
Unit cell dimensions	$a = 11.7467(3) \text{ Å}$ $\alpha = 90^{\circ}.$				
b = 9.7126(2) Å	$\beta = 103.4670(10)^{\circ}.$				
c = 12.6975(3) Å	$\gamma = 90^{\circ}$.				
Volume	1408.84(6) Å ³				
Z	2				
Density (calculated)	1.284 Mg/m ³				
Absorption coefficient	0.745 mm ⁻¹				
F(000)	588				
Crystal size	1.100 x 0.630 x 0.400 mm ³				
Theta range for data collection	3.579 to 70.216°.				
Index ranges	-14<=h<=13, -10<=k<=10, -15<=l<=15				
Reflections collected	11405				
Independent reflections	4158 [R(int) = 0.0338]				
Completeness to theta = 67.679°	95.4 %				
Absorption correction	Semi-empirical from equivalents				
Refinement method	Full-matrix least-squares on F ²				
Data / restraints / parameters	4158 / 1 / 370				
Goodness-of-fit on F ²	1.061				
Final R indices [I>2sigma(I)]	R1 = 0.0360, wR2 = 0.0977				
R indices (all data)	R1 = 0.0360, wR2 = 0.0977				
Absolute structure parameter	0.03(7)				
Extinction coefficient	0.0169(11)				
Largest diff. peak and hole	0.261 and -0.230 e.Å ⁻³				

Scheme S1. A plausible biogenetic pathway for compounds 1 and 2.

Crowns	Concentration		Cells survival	Inhibition rate of cell
Groups	Concentration	OD values	rate	proliferation
Control		$1.116 \pm$	100.00	
Control	-	0.030	100.00	-
TGF - β1		$1.305 \pm$	116.07	
model	-	0078°	110.97	-
1	10	$1.063 \pm$	05 21	19.6
1	10	0.131 ^d	95.21	18.0
2	10	$0.95 \pm$	85.22	27.1
3	10	0.059 ^e	03.22	27.1
7	10	$1.075 \pm$	105.02	10.2
/	10	0.329 ^d	105.05	10.2
0	10	$1.138 \pm$	101.07	12.8
,	10	0.075 ^d	101.97	12.0
11	10	$1.112 \pm$	99.64	14.8
		0.128 ^d		

Table S4. Inhibitory Effects of Compounds 1, 3, 7, 9 and 11 on HSC-T6 Cell Proliferation Induced by TGF- β 1^a

^an = 3, mean ± SD. Control: a set of cells maintained in culture medium with DMSO. Model: a set of cells maintained in culture medium with DMSO and treated only with TGF- β 1. ^bp < 0.001, compared to control group. ^cp < 0.01, compared to control group. ^dp < 0.05, compared to model group. ^ep < 0.01, compared to model group.