Supplementary Information File

Gut microbiota regulates acute myeloid leukaemia via alteration of intestinal barrier function mediated by butyrate

Ruiqing Wang¹, Xinyu Yang¹, Jinting Liu¹, Fang Zhong², Chen Zhang¹, Yuhong Chen¹, Tao Sun¹, Chunyan Ji¹, Daoxin Ma¹*

¹Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China; ²Department of Endocrinology and Metabolism, Shandong Provincial Hospital affiliated with Shandong University, Jinan, Shandong 250012, P.R. China

Corresponding author: Daoxin Ma, Professor Address: Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China Phone: 86-0531-82169887 Fax: 86-0531-86927544 E-mail address: daoxinma@sdu.edu.cn

This file includes:

Supplementary Figures 1 to 11

Supplementary Tables 1 to 3

Supplementary figure 1

a Rarefaction curves of 61 samples from AML patients and healthy controls.b The difference in abundances of phylum and genus between the AML and control groups.

GFP

a The diversity and abundance of the gut microbiota in ABX-treated and control mice. Unpaired t-test was used for comparing the Sob index (n=3 per group). b Relat ive OTUS taxon abundance comparison among the AML (n=31) and control groups (n=30). The mean is used to measure the centre of the error bar. c Chaol and shannon index of gut microbiota of AMLI-ETO mice (n=5 per group). d Chaol and shannon index of gut microbiota of C1498 mice (n=5 per group). c-d Data were presented as standard boxplots (with the box encompassing Q1 to Q3, the median denoted as a central horizontaline in the box, and the whiskers covering the data within ± 1.5 IQR). e The representative FACS graphs of the leaukemia cells (GFP+ cells) in spleen, peripheral blood and bone marrow from ABX AML mice and control PBS AML mice. P-values were determined using Two- tailed t-test in a, c, d and Wilcoxon rank test in **b**. Error bars represent mean \pm SEM in **a-d**. ***p=0.0006 (a), ***p=0.0004 AML-23 days vs. AML-0 day shannon. **p=0.001 AML-23 ***p=0.0004 Control-0 day vs. days shannon. AML-23 days shannon, ***p=0.0002 AML-23 days vs. Control-23 days vs. AML-0 day chao1, ****p<0.0001 Control-0 day vs. AML-23 days chao1, ****p<0.0001 Control-23 days vs. AML-23 days chao1 (c), **p=0.003 AML-21 days vs. AML-0 day shannon, *p=0.0157 Control-0 day vs. AML-21 days shannon, *p=0.0113 Control-23 days vs. AML-21 days shannon, *p=0.00273 AML-21 days vs. AML-0 day chao1, *p=0.0157 Control-0 day vs. AML-21 days chao1, *p=0.0113 Control-21 days vs. AML-21 days chao1 (d). Source data are provided as a Source Data file.

a Photograph of spleens from FP treated AML mice (n=5) and control AML mice (n=5). **b** HE histopathology sections and Ki67 immunohistochemical staining of a representative spleen, F.P treated group and control group. All microscopic analyses were performed (original magnification x80 or x200), scale bar =1000 μ m and 275 μ m. c The cells (GFP+ cells) in the spleen, peripheral blood and bone marrow from F.P treated AML mice (n=5) and control AML mice (n=5). d Kaplan- Meier survival curve of AML mice (n=5 per group). e Photograph of spleens from AML mice treated with FP or without F.P (n=5 per group). f Weight of spleens from AML mice treated with F.P or without F.P (n=5 per group). P-values were determined using Two-tailed t-test in a, c, f, g. P-values were determined using Gehan-Breslow-Wilcoxon test in d. Error bars represent mean \pm SEM. *p=0.0468(a), *p=0.0366 BM (c), *p=0.0258 SP, *p=0.0376 BM (g). Source data are provided as a Source Data file.

b

GFP

a PCoA of a Weighted UniFrac distance analysis. **b** The representative FACS graphs of the leukaemia cells (GFP+ cells) in spleen, peripheral blood and bone marrow.

a The concentrations of SCFAs in peripheral blood of AML patients (n=20) and controls (n=22). **b** The concentrations of SCFAs in bone marrow of AML patients (n=7) and controls (n=5). c The representative FACS graphs of the leukemia cells (GFP+ cells) in the spleen, peripheral blood and bone marrow. d The concentrations of SCFAs in blood samples of butyrate treatment mice (n=11) and controls (n=9). e The colon length of AML mice and control mice. **f** The schematic diagram of the mice experimental process including LPS treatment. g The concentration of butyrate in the supernatant of Faecalibacterium (n=3 The content in per group). h butyrate mice gavaged with Faecalibacterium compared with controls (n=9, per group). g-h All data are from the independent experiments. P-values were determined using Twotailed t-test in **a**, **b**, **d**, **g**, **h**. Error bars represent mean \pm SEM. **p=0.0014 (g), *p=0.0207 (h). Source data are provided as a Source Data file.

Supplementary figure 6

AML

Control

a The mRNA expression levels of tight junction protein components TJP-2, occludin, claudin-3, claudin-4 and claudin-8 in intestinal epithelial cells of AML, control and butyrate-treatment mice (n=3 per group). **b** The protein levels of occluding in intestinal epithelial cells were determined by Western blot. GAPDH was used as the control (n=3, per group). c Diversity and richness of the gut microbiota in AML patients (AML) and healthy controls (Con) (differentiated by age and gender). The unpaired t test was used to compare the Shannon index (n=61). Data were presented as standard boxplots (with the box encompassing Q1 to Q3, the median denoted as a central horizontal line in the box, and the whiskers covering the data within ± 1.5 IQR). **d** Relative taxa abundance comparison among the AML and control groups (differentiated by age and gender) (n=61). The mean is used to measure the centre of the error bar. e-f The colon HE and Ki67 staining of AML and control mice, scale bar=250µm and 100µm. P-values were determined using Twotailed t-test and error bars represent mean \pm SEM in **a-i**. *p=0.0373 AML vs AML+ Butyrate (Occludin), *p=0.0323 AML+ Butyrate vs Control (Occludin), *p=0.0416 AML vs AML+ Butyrate (claudin-3) (a). *p=0.0109 AML+Butyrate vs Control (Occludin) (b). *p=0.01225 30<Age<55 group, *p=0.01822 Man group (c). Source data are provided as a Source Data file.

LPS concentrations in the peripheral plasma of ABX treated AML mice and (-10-11 days)(n=4 AML mice **P-values** control per group). using Two-tailed t-test and Error bars represent mean ± were determined SEM. **p=0.002543 -8days, **p=0.009798 -5days, *p=0.016498 -3days, *p=0.010607 8days, **p=0.004464 11days. Source data are provided as a Source Data file.

a Photographs and weights of spleens from AML mice(n=5), butyrate treated AML (n=5), ABX treated AML mice (n=5) and LPS treated AML mice mice (n=3). **b** Leukaemia cells (GFP⁺ cells) in the spleen, peripheral blood, and bone marrow from AML mice (n=5), butyrate treated AML mice (n=5), ABX AML mice (n=5)AML treated and LPS treated mice (n=3). c Ki67 immunohistochemical and HE histopathology sections staining of a representative splee n, AML mice, butyrate treated AML mice, ABX treated AML mice and LPS treated AML mice, scale bar = $275 \,\mu$ m. P-values were determined using Two-tailed t-test and error bars represent mean \pm SEM in **a**, **b**. **p=0.006265 AML vs ABX, **p=0.00117 AML vs LPS (a), *p=0.0105 AML vs Butyrate+AML PB, *p=0.0126 AML vs LPS PB, *p=0.0388 AML vs Butyrate+AML SP, *p=0.0338 AML vs ABX SP, **p=0.00328 AML vs LPS SP, *p=0.0389 AML vs Butyrate+AML BM, **p=0.0076 AML vs LPS BM (b). Source data are provided as a Source Data file.

Ki67

200× Control -FMT

200× AML-FMT

200× Control -FMT

200× AML-FMT

a Photographs and weights of spleens from AML-FMT group (n=5) and Control-FMT group (n=5). **b** Leukaemia cells (GFP+ cells) in the spleen, peripheral blood, and bone marrow from AML- FMT group (n=5) and Control-FMT group (n=5). P-values were determined using Two-tailed t-test and error bars represent mean \pm SEM in **a**, **b**. **c** HE histopathology sections and Ki67 immunohistochemical staining of a representative spleen, AML- FMT group and Control-FMT group, scale bar=275 µm. *p=0.292 (**a**), ***p=0.0009 PB, *P=0.0472 SP, *p=0.0214 BM (**b**). Source data are provided as a Source Data file.

b

a The colon HE staining of AML and DSS treated AML mice. b Photographs and weights of spleens from AML (n=5) and DSS treated AML mice (n=5), 500µm. Three times each experiment scale repeated bar = was (GFP⁺ independently with similar results. c Leukaemia cells cells) in the spleen, peripheral blood, and bone marrow from AML (n=5) and DSS (n=5). **d** Ki67 immunohistochemical AML mice staining of a treated representative spleen from DSS-treated AML mice, and control AML mice. e HE histopathology sections staining of a representative spleen, DSS-treated AML mice, and control AML mice, scale bar=275 µm. P-values were determined using Two-tailed t-test and error bars represent mean \pm SEM in **b**, **c**. *p=0.034 (**b**), *p=0.0205, **p=0.0063 (c). Source data are provided as a Source Data file.

a Gating strategy was used to identify apoptotic cells in mouse primary cells. Annexin-V was used to label early apoptotic cells, and Annexin-V and PI were used to label late apoptotic cells. **b** Gating strategy was used to identify GFP⁺ cells in mouse peripheral blood, spleen and bone marrow cells.

Characteristics	AML Patient	Healthy control
Male/female	15/16	15/15
Age at study entry, year, median (range)	46 (15-69)	49 (20-73)
Bone marrow blasts at diagnosis, %, median (range)	73 (26-96)	/
WBC at diagnosis, ×10 ⁹ /L, median (interquartile range)	31.7 (0.82-467)	/
Cytogenetic risk group, no./total no.		
Favorable	9/31	/
Unfavorable	20/31	/
Missing data	2/31	/
Status after the first course of chemotherapy, no./total no. (%)		
CR	20/31	/
Not CR	9/31	/
Unavailable data	2/31	/
AML FAB subtype, no./total no. (%)		
AML with minimal differentiation: M0	0/31	/
AML without maturation: M1	1/31	/
AML with maturation: M2	2/31	/
Acute Promyelocytic leukemia: M3	7/31	/
Acute Myelomonocytic leukemia: M4	3/31	/
Acute monoblastic or monocytic leukemia: M5	14/31	/
Acute erythroid leukemia: M6	0/31	/
Acute megakaryoblastic leukemia: M7	0/31	/
Other subtype	4/31	/

Supplementary table 1. Clinical and laboratory characteristics of the 31 AML cases and 30 controls.

WBC: white blood cell; CR: complete remission

Supplementary table 2

The sequences of PCR primers

Gene	Primers ((5' - 3')
	Forward	Reverse
mClaudin-1	AGGTCTGGCGACATTAGTGG	TGGTGTTGGGTAAGAGGTTG
mClaudin-2	CTCCCTGGCCTGCATTATCTC	ACCTGCTACCGCCACTCTGT
mZO-1	GCCGCTAAGAGCACAGCAA	TCCCCACTCTGAAAATGAGGA
mTJP2	ATGGGAGCAGTACACCGTGA	TGACCACCCTGTCATTTTCTTG
mOccludin	TTGAAAGTCCACCTCCTTACAGA	CCGGATAAAAAGAGTACGCTGG
mClaudin-3	ACCAACTGCGTACAAGACGAG	CAGAGCCGCCAACAGGAAA
mClaudin-4	TGGAGGACGAGACCGTCAA	CACGGGCACCATAATCAGCA
mClaudin-8	GCAACCTACGCTCTTCAAATGG	TTCCCAGCGGTTCTCAAACAC
mGAPDH	GGACACTGAGCAAGAGAGGC	TTATGGGGGTCTGGGATGGA

Risk classification standard

Risk Category	Genetic Abnormality
Favorable-risk	t (8;21) (q22;q22.1);RUNX1-RUNX1T1 inv(16)(p13.1q22) or t(16;16)(p13.1;q22);CBFB-MYH11Biallelic mutated CEBPA Mutated NPM1 without FLT3-ITD or with FLT3-ITD ^{low}
Unfavorable-risk (Intermediate and Adverse)	Mutated NPM1 and FLT3-ITD ^{high} Wild-type NPM1 without FLT3-ITD or with FLT3-ITD ^{low} (without adverse-risk genetic lesions) t(9;11)(p21.3;q23.3);MLLT3-KMT2A Cytogenetic abnormalities not classified as favorable or adverse t(6;9)(p23;q34.1);DEK-NUP214t(v;11q23.3);KMT2A rearranged t(9;22)(q34.1;q11.2);BCR-ABL1 inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2);GATA2,MECOM(EV/1)-5 or del(5q);-7;- 17/abn(17p) Complex karyotype, monosomal karyotype Wild-type NPM1 and FLT3-ITD ^{high} Mutated RUNX1, Mutated ASXL1, Mutated TP53

Reference: Acute Myeloid Leukemia, Version 3.2019, NCCN Clinical Practice Guidelines in Oncology

Supplementary table 3

Mul	tiple linear reg	ression analysis	8
Variables		Parameter Estima	tes
	В	Р	Exp (B)
Faecalibacterium	-30.055	0.002	-0.640
Roseburia	-3.518	0.638	-0.087
Age	-0.394	0.713	-0.055

Dependent Variable: WBC; B: regression coefficient; Exp(B): The exponent of B; Italic: Bacterial species name

The risk classification standard is listed in supplementary Table 2

A two-tailed P-value < 0.05 was considered statistically significant

Risk-prognosis assessment

	favorable	unfavorable	Total
CR	9	11	20
Non-CR	0	9	9
Total	9	20	29

Patients' information

	Gender	Positive genes
Patient-1	Male	FLT3-ITD, NPM1, IDH2,
Patient-2	Male	SRSF2 CEBPA
Patient-3	Male	FLT3-ITD, NPM1, DNMT3A
Patient-4	Female	CBFB-MYH11
Patient-5	Female	IDH2, NPM1