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1 Optical microscope image and septuple layer number identification of MnBi2Te4 flakes

Figure S1: (a) Optical microscope images of exfoliated MnBi2Te4 flakes. The Al2O3 is deposited

onto MBT flakes for exfoliation. The image was taken on a transparent PDMS substrate. Scale

bar, 20 µm. (b) Illustration of the 2-SL in the AFM phase. (c) Optical transmittance (filled circles)

from 1 SL to 5 SL. The solid line is a linear fit from the Beer-Lambert law.
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2 H-field dependent Raman spectra

Systemic field dependent Raman spectra from -20 cm−1 to 20 cm−1 without subtracting the spin

fluctuations background discuss in the main text. The left(right) panel shows spectra observed in

the co-circular(cross-circular) polarization channel.

Figure S2: Magnetic field dependent Raman spectra from 2-SL MBT. (a) Low temperature (12 K)

co-circular (σ+/σ+) polarization spectra. The blue, green, and red lines highlight the magnon peak

in the three magnetic phases discussed in the main text. (b) Low temperature (12 K) cross-circular

(σ+/σ−) polarization spectra. In both (a) and (b), the shaded gray rectangles block a noise peak

that originates from the instrument.
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3 Magnetic lattice and Effective spin model

The magnetic lattice structure for 2-SL MBT is shown in Fig. S3. In each layer, the Mn atoms form

a triangular lattice in a hexagonal setting with axes a = A(1/2,−
√

3/2, 0), b = A(1/2,
√

3/2, 0),

c = (0, 0, C) where A(C) is the in-plane (out-of-plane) lattice constant. The Mn atoms are located

at positions r1 = (0, 0, 0), r2 = 1/3a + 2/3b + c in the unit cell (see Fig. S3). In each layer, the

Mn atoms have six intralayer nearest neighbors (n.n.) δi, and three interlayer n.n.s γi. The stacking

is of the ABC type, where the top layer Mn atoms lie at the center of the triangles in the bottom

layer and vice-versa, forming an effective hexagonal lattice when viewed down the c-axis.

Figure S3: Bilayer MBT crystal structure, where only the Mn magnetic atoms are shown for clarity.

The six (three) intralayer (interlayer) nearest-neighbors are shown by black (red) lines.

The local-moment Hamiltonian (S = 5/2) deduced from inelastic neutron scattering mea-
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surements 1 for bulk MBT in the presence of an applied external magnetic field is

H = −
∑
ij

JijSi · Sj − Jc
∑
〈ij〉

Si · Sj −D
∑
i

(szi )
2 − gµB

∑
j

H · Si, (1)

where Jij describes intralayer interactions (up to fourth-order neighbor interactions are need to

correctly fit the neutron scattering data with SJ1 = 0.3 meV, SJ2 = −0.083 meV, and SJ4 =

0.023 meV), SJc = −0.055 meV corresponds nearest-neighbor AFM interlayer interactions, and

SD = 0.12 meV accounts for single ion anisotropy. The last term corresponds to coupling to

a Zeeman field, where we assume g = 2 in this work and µB is the Bohr magneton. Ref. 2

performs inelastic neutron scattering and also finds that long-range interactions (up to seventh

nearest-neighbors) are required to fit the magnon spectrum, with exchange interactions

[SJ1, SJ2, SJ3, SJ4] = [0.231(2), 0.033(2), 0.006(2), 0.001(2)] meV,

[SJ5, SJ6, SJ7] = [0.018(2), 0.010(2), 0.001(1)] meV,

SJc = 0.065 meV, and single-ion anisotropy SD = 0.150 meV. This local-moment Hamiltonian

and its numerical parameters lead to an A-type AFM, where each layer is FM ordered but adjacent

layers present AFM order.

In this work, we adopt the model Hamiltonian Eq. (1), but restrict the intralayer interactions

to nearest-neighbors. We use the interlayer exchange interaction Jc and single-ion anisotropy D as

fitting parameters to describe our Raman scattering measurements.
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4 Spin wave calculations

In this section, we calculate the spin wave spectrum for 2-SL in the AFM, canted AFM (cAFM),

and FM phases as a function of magnetic field. Since the primitive unit cell contains two magnetic

atoms in all the magnetic phases, we expect two magnon modes across all the magnetic fields

considered.

Spin order as a function of magnetic field. 2-SL is expected to exhibit interlayer AFM order

in the absence of applied magnetic field. When a magnetic field is applied in the c-direction, the

system undergoes a first-order spin-flop phase transition into a cAFM order at the critical field

Hsf
3. Upon further increasing the field, the system becomes FM at a second critical field Hfm. In

Table 1, we summarize the reported values for the cAFM and FM critical fields for several samples.

To determine the ground state in our sample for a given magnetic field, we consider the

macro-spin approximation 5, where the energy per unit volume derived from the local moment

Hamiltonian (1) takes the form

E(M 1,M 2) = −Sz1J1

M2
s

(
|M 1|2 + |M 2|2

)
− SzcJc

M2
s

M 1 ·M 2 −
SD

M2
s

(
M2

z,1 +M2
z,2

)
− gµB

Ms

Hext · (M 1 + M 2) , (2)

where we assume Mi = Ms(sin θi, 0, cos θi), Ms is the saturation magnetization per unit cell,

z1 is the number of intralayer n.n.s, and zc is the number of interlayer n.n.s. in the 2-SL sys-

tem. Solutions to the set of equations ∂E(M 1,M 2)/∂θi = 0 determine the possible ground

states. The AFM is given by θ1 = 0 and θ2 = π, while the spin-flop phase by θ1 = −θ2 =

arccos (−gµBHz/(2zcSJc + 2DS)).
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AFM magnons When the system is in an AFM groundstate, we perform the Holstein-Primakoff

transformation Ŝ+
a,i =

√
2S − â†i âiâi, Ŝ−a,i = â†i

√
2S − â†i âi, Ŝza,i = S − â†i âi, for sublattice a

(top layer), and Ŝ+
b,i = b̂†i

√
2S − b̂†i b̂i, Ŝ−b,i =

√
2S − b̂†i b̂ib̂i, and Ŝzb,i = −S + b̂†i b̂i for sublattice

b (bottom layer). We keep terms in the transformation up to quadratic order in the bosonic opera-

tors. After Fourier transforming to momentum space we obtain the Bogoliubov–de Gennes (BdG)

Hamiltonian in the basis ψk = (ak, bk, a
†
−k, b

†
−k)T

H(k) =

 A(k) B(k)

B∗(−k) A∗(−k)

 , (3)

where

A(k) =

 2DS − J1S(f(k)− 6) +Hz − JcSzc 0

0 2DS − J1S(f(k)− 6)−Hz − JcSzc

 ,

(4)

and

B(k) =

 0 −JcSf⊥(k)

−JcSf⊥(−k) 0

 . (5)

Diagonalizing H(k) we obtain the magnon energies

ω±(k) = S

√
(−2D + J1f(k)− z1J1 + Jczc)2 − Jc2 |f⊥(−k)|2 ± gµBHz,

where z1 = 6, zc = 3, f(k) =
∑

i e
iδi·k, f⊥(k) =

∑
i e
iγi·k . At the Γ point, we obtain

ω±(k = 0) = 2S
√
D(D − Jczc)± gµBHz. (6)
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In Fig. S4, we plot the Γ point AFM magnon energies as a function of the applied magnetic

field. The corresponding eigenvectors at the Γ point are

ψ−k=0 = 1/N



−2
√
D(D−Jczc)+2D−Jczc

Jczc

0

0

1


, ψ+
k=0 = 1/N



0

−2
√
D(D−Jczc)+2D−Jczc

Jczc

1

0


(7)

where N is a normalization constant. These wavefunctions indicate that the two sublattices

oscillate with different amplitudes. This has consequence for the selection rules, as discussed in

the main text.

In Fig. S5, we plot the magnon energies for Hz = 0 T along a high-symmetry path in the

BZ. The red bands correspond to the phonons in the AFM phase obtained with density functional

theory as outlined in Note 6. Notice that in the vicinity of the Γ point, the mangnons overlap with

the acoustic phonons.

FM magnons For the FM case, which applies for magnetic fields above the saturation field HFM ,

we apply a Holstein-Primakoff transformation to the local moment Hamiltonian (1), defined by

Ŝ+
a,i =

√
2S − â†i âiai (8)

Ŝ−a,i = â†i

√
2S − â†i âi, (9)

Ŝza,i = S − â†i âi, (10)
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Hsf Hfm

Ref. 2 (bulk) 3.3 T -

Ref. 1 (bulk) 3.4 T 7.9 T

Ref. 3 (2-SL) 2.3 T 3.5T

Ref. 4 (4-SL) 2.1 T -

Ref. 4 (6-SL) 2.1 T ∼ 7T

Table 1: Magnetic field transition values reported in the literature for bulk, 2-SL, 4-SL and

6-SL MBT samples.

0.0 0.5 1.0 1.5
0

1

2

3

4

Figure S4: Γ point AFM magnon energies as a function of the applied magnetic field. The param-

eters used are SJc = −0.138 meV and SD = 0.024 meV.
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where a labels the sublattice (top layer), and i the atom position. The sublattice b (bottom layer)

has an analogous set of transformations. Keeping terms in the transformation up to quadratic order

in the bosonic fields â†i , âi, b̂
†
i , b̂i, and considering only nearest-neighbors for simplicity we obtain

the magnon Hamiltonian in the basis (ak, bk) in momentum space

Ĥk =

gµBHz + 2SD + SJczc − SJ1 (−z1 + f(k)) −SJcf⊥(k)

−SJcf⊥(−k) gµBHz + 2SD + SJczc − SJ1 (−z1 + f(k))


(11)

where k = (kx, ky) is the momentum defined in the Brillouin zone (BZ) of the triangular lattice.

The magnon energies are

ω±(k) = gµBHz + 2SD + z1SJ1 + SJczc − SJ1f(k)± JcS|f⊥(k)|. (12)

At the Γ point, ω±(Γ) = 2SD+ gµBHz + zcS(Jc ± Jc). The intralayer exchange interaction does

not enter in the energy at the Γ point. The associated wave functions are

(ak=0, bk=0)+ = 1/
√

2(−1, 1) (13)

(ak=0, bk=0)− = 1/
√

2(1, 1). (14)

Therefore, the ω+(Γ) branch corresponds to magnetic moments in opposite layers oscillating

in opposite directions, while the ω−(Γ) branch corresponds to sublattices oscillating in the same

direction.

In Fig. S6, we plot the magnon energies as a function of the applied magnetic field. In
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Fig. S7, we plot the magnon energies along a high-symmetry path in the BZ. We also display the

phonon energies (red curves).

Canted AFM magnons In this section we consider the magnons in the canted AFM phase (cAFM),

obtained in the magnetic field regime Hsf < Hz < Hfm T. The canting angle is given by

θ1 = −θ2 ≡ θ = arccos (−gµBHz/(2zcSJc + 2DS)). For this derivation, we follow closely

Ref. 5. We introduce a coordinate system for each layer, where the local z-axis is aligned with

the canted moments. We apply rotations Ry(θ) and Ry(−θ) to each sublattice. Then, we ap-

ply a Holstein-Primakoff transformation to the rotated spin operators Ŝ+
m,i =

√
2S − m̂†im̂im̂i,

Ŝ−m,i = m̂†i

√
2S − m̂†im̂i , Ŝzm,i = S − m̂†im̂i, where m̂ = â, b̂ (for the top and bottom lay-

ers). Keeping terms in the transformation up to quadratic order in the bosonic operators, going

to momentum space, and applying a generalized Bogoliubov transformation, we obtain the cAFM

magnon energies

ω2
± = (Ak ±Dk)

2 − (Bk ± Ck)2 , (15)

where

Ak = gµBHz cos θ + zcSJc cos(2θ) + 2SD(cos2 θ − 1

2
sin2 θ)− SJ1(f(k) + f ∗(k)− 2z1)

(16)

Bk = −SJcf⊥(k) sin2 θ (17)

Ck = SD sin2 θ (18)

Dk = −SJcf⊥(k) cos2 θ. (19)
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Figure S5: Magnon spectrum (black) along a high-symmetry path in the BZ for Hz = 0 T. The red

bands correspond to phonons, as described in Note 6.

7.0 7.5 8.0 8.5 9.0
0

2

4

6

8

Figure S6: Γ point FM magnon energies as a function of the applied magnetic field. Only the top

branch is visible in Raman. The parameters used are SJc = −0.138 meV and SD = 0.024 meV.
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Figure S7: Magnon spectrum (black and blue) along a high-symmetry path in the BZ forHz = 8 T.

The red bands correspond to phonons. The parameters used are SJc = −0.138 meV and SD =

0.024 meV.

At the Γ point, the cAFM magnon energies simplify to

ω+ =

√
SJczc

(
(gµBHz)2

(SJczc − SD)

(SJczc + SD)2 + 4DS

)
(20)

ω− = 0. (21)

In Fig. S8, we plot the cAFM magnon energies as a function of the magnetic field.
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5 Magnon selection rules

In this section, we discuss the selection rules for the magnon modes in 2-SL MBT in each of the

three ground states as a function of magnetic field. In analogy with the selection rule derivation for

phonons, we need to take into account the magnetic point group and analyze the symmetries of the

magnetic moment oscillations. For our symmetry analysis, we employ the ISOTROPY Software

Suite 6, 7, and the Bilbao Crystallographic Server 8.

In the paramagnetic phase, 2-SL MBT belongs to the space group P 3̄m1 with point group

D3d, with D3d = D3 + iD3 and D3 = {1, 3z, 3−1
z , 2x, 2xy, 2y}. We can understand this difference

in space group compared with bulk MBT because 2-SL MBT (and N-SL in general) loses the

symmetries composed with translations along the c axis. In 2-SL MBT, neither FM nor AFM

order changes the size of the chemical unit cell, and the wave vector for the magnetic order is

k = (0, 0, 0). This is relevant to derive the possible symmetry-allowed magnetic orders. For an

extended discussion, see Ref. 9. In the next sections, we obtain the magnetic point group in each

phase, the corresponding Raman tensors, and the expected one-magnon selection rules. We then

study two-magnon Raman processes, and the effect of broken inversion symmetry.

AFM phase AFM 2-SL MBT possesses magnetic space group P 3̄′m′1, as determined by ISOTROPY 6, 7.

The corresponding magnetic point group is D3d(D3) = D3 ⊕ T (iD3) (3̄′m′), where T is the time

reversal operator, i corresponds to inversion, and the point group D3 = {1, 3z, 3−1
z , 2x, 2xy, 2y} is

the corresponding unitary invariant subgroup of index two. This is relevant to obtain the magnon

Raman tensors we discuss below.
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Notice that neither time reversal T nor inversion i are symmetries of the magnetic point group

D3d(D3) (3̄′m′). The magnetic point groups possess irreducible corepresentations, in analogy with

point groups and their irreducible representations. In analogy with phonons, magnons at each wave

vector can be classified according to each of the magnetic point group corepresentations, which is

relevant to determine their selection rules. The character tables of all 122 magnetic point groups

can be found in the Bilbao Crystallographic Server 10–12, which we use to determine the magnon

corepresentations considering their wave functions.

For D3d(D3) (3̄′m′), the characters of the unitary symmetry operations are shown in Table 2.

According to the group theory of magnetic point groups, the selection rules for the Γ point

optical magnons are dictated by the unitary invariant subgroup of the magnetic point group 13.

AFM 2-SL MBT has unitary invariant subgroup D3, which does not include inversion symmetry.

Therefore, the usual cross-circular polarization selection rule does not apply in this phase. The

Raman tensors for D3d(D3) are given in terms of the corepresentations by 14

R(DA1) =


a 0 0

0 a 0

0 0 b

 , R(DA2) =


0 b 0

−b 0 0

0 0 0

 ,

R(1)(DE) =


c 0 0

0 −c d

0 d 0

 , R(2)(DE) =


0 −c −d

−c 0 0

−d 0 0

 , (22)

where all the coefficients are real. The Raman intensity is then given by Iν ∝
∣∣∣∑α,β={x,y,z} e

∗
in
αRν

αβe
β
out

∣∣∣2,

where eαin/out are the polarization vectors of the incoming and outgoing light and Rν
αβ are the com-
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Figure S8: Γ point cAFM magnon energies as a function of the applied magnetic field. Only one

of the magnon modes has non-zero energy. The parameters used are SJc = −0.138 meV and

SD = 0.024 meV.

1 3z, 3
−1
z 2x, 2xy, 2y

DA1 1 1 1

DA2 1 1 −1

DE 2 −1 0

Table 2: The characters of the unitary symmetry operations of the magnetic point group

D3d(D3) (3̄′m′).
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ponents of the Raman tensor for mode ν 15. Then, a magnon with symmetry DA1 can be observed

in the σ+/σ+ channel, and magnons with symmetry DE can be observed in the σ+/σ− channel.

The corepresentation of the magnons in AFM 2SL-MBT can be obtained by studying the

transformation properties of the magnon wave functions derived in the previous sections 16. At the

Γ point, we find |ψ−(k = 0)〉 = 1/N
(
Câ+ b̂†

)
and |ψ+(k = 0)〉 = 1/N

(
Cb̂+ â†

)
, where C is

a coefficient that depends on the interlayer exchange and anisotropy (see Eqns. (7)).

We can simplify the analysis by studying the transformation under rotations {2x, 2xy, 2y},

which switch the sublattices (top and bottom layers). Since the coefficients of the operators â, b̂†

are different (this is, magnetic moments in opposite layers oscillate with different amplitudes), the

symmetries {2x, 2xy, 2y} are lost and the AFM magnons should transform as the doubly-degenerate

DE corepresentation. The Raman tensors R(DE) indicate that this modes are observable in the

cross-polarization channel.

FM phase FM 2-SL MBT has magnetic space group P 3̄m′, as determined by ISOTROPY 6, 7.

The corresponding magnetic point group is D3d(S6) = S6 + T (D3d − S6) (3̄m′), where S6 =

{1, 3z, 3−1
z , i, i3z, i3

−1
z } is the unitary invariant subgroup. The magnon selection rules are deter-

mined by the unitary invariant subgroup S6, which possess inversion symmetry, contrary to the

18



AFM case. The Raman tensors for the magnetic point group corepresentations are 14

R(DAg) =


a ib 0

−ib a 0

0 0 l

 , R(DE(1)
g ) =


d id ic

id −d c

ig g 0

 , R(DE(2)
g ) =


e −ie −if

−ie −e f

−ih h 0

 .

(23)

At the Γ point, we find the magnon creation operators |ψ±(k = 0)〉 =
(
∓â+ b̂

)
/
√

2 (see

Eqns. (14)). The simplest symmetry to analyze in this case is inversion, which switches sublattices

and does not affect the magnetic moment direction: i|ψ±(k = 0)〉 = ∓|ψ±(k = 0)〉. Therefore,

|ψ+(k = 0)〉 is Raman silent and |ψ−(k = 0)〉 is Raman active with energy ω±(Γ) = 2SD +

gµBHz + zcS(Jc ± Jc). Since |ψ−(k = 0)〉 is also invariant under rotations 3z, 3
−1
z , and rotations

combined with inversion i3z, i3−1
z , we deduce it transforms as the corepresentation DAg, which

can be observed in the σ+/σ+ polarization channel.

cAFM phase In the cAFM phase, the magnetic space group isC2′, as determined by ISOTROPY 6, 7.

The corresponding not centro-symmetric magnetic point group 2′ = {1, T 2y}. The Raman tensor

for the magnetic point group 2′ corepresentations is 14

R(DA) =


a b ic

d e if

ig ih l

 . (24)

In this magnetic phase, due to the low-symmetry, the Raman tensor components do not have

many restrictions, and a magnon could be observed in the σ+/σ+ and σ+/σ− polarization channels,

19



depending on the intensity of the matrix elements. These intensities cannot be obtained within

group theory and require first principles calculations.

Spin wave Raman tensors We list the Raman elements of all possible observable modes in differ-

ent magnetic phases in MBT 2-SLs. Experimentally, not all modes allowed by the Raman tensor

are observed. One needs to compute the magnon wavefunctions for a particular material using spin

wave theory. The calculated magnon modes obey a certain symmetry (e.g. DA1, DE) that further

predicts the polarization configurations of the Raman signal.
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Magnetic Raman σ+/σ+ σ+/σ−

Phase Tensor (σ−/σ−) (σ−/σ+)

DE =


c 0 0

0 −c d

0 d 0

 or


0 −c −d

−c 0 0

−d 0 0

 0(0) 4|c|2 (4|c|2)

AFM DA1 =


a 0 0

0 a 0

0 0 b

 4|a|2(4|a|2) 0(0)

DA2 =


0 b 0

−b 0 0

0 0 0

 0(0) 4|b|2(4|b|2)

c-AFM DA =


a b ic

d e if

ig ih l

 (a+ e)2 + (d− b)2 (a− e)2 + (d+ b)2

(
(a+ e)2 + (d− b)2

) (
(a− e)2 + (d+ b)2

)

FM DAg =


a ib 0

−ib a 0

0 0 l

 4|a+ b|2(4|a− b|2) 0(0)

DEg =


d id ic

id −d c

ig g 0

 or


e −ie −if

−ie −e f

−ih h 0

 0(0) 4|d|2(4|e|2)

Table 3: Column (ii) Raman tensors for a certain magnon mode with a specific symmetry

(e.g., DE or DA); Tensor elements contributing to the Raman signal with (ii) co-circular and

(iii) cross-circular configurations. Those elements responsible for the observed magnon

mode discussed in the main text are highlighted in red. The selection rule is valid for one

magnon scattering processes.
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Symmetry Operations The c-AFM phase belongs to the 2’ point group where two-fold rotational

symmetry along the y-axis ( Cy) is broken. On the other hand, in the AFM case two-fold rotational

symmetry along the xy plane (Cy,Cyx,Cx) are lost. So in the c-AFM case, one must rotate along the

y-axis while the AFM case can be either x or y-axis.

Figure S9: (a - c) Illustration of the step by step symmetry operations for each magnetic phase of

2-SL MBT.

In summary, even though the symmetries are different in each of the magnetic ground states

due to the direction of the magnetic moments, one-magnon processes can be observed in the σ+/σ+

polarization channel for cAFM and FM phases. In the AFM phase, the one-magnon processes are
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expected in the cross-polarization channel σ+/σ−.

Two-magnon Raman scattering In this section, we consider the possibility that the magnetic

mode at zero applied magnetic field originates from two-magnon Raman scattering processes.

There are two features that support this interpretation. First, M1 integrated intensity de-

creases as a function of temperature and vanishes at Tc ≈ 17K, consistent with the critical temper-

ature for 2-SL MBT 3. Second, the energy scale of this mode is consistent with interlayer exchange

Jc and anisotropy D interactions we obtained by fitting the cAFM magnons. However, we should

point out that its linewidth is relatively small compared with other two-magnon processes reported

in the literature 17–20.

In Fig. S10 (left), we plot the AFM magnons at zero applied magnetic field considering only

nearest-neighbour intralayer interactions along a high symmetry path in the Brillouin zone. The

two magnon modes are degenerate at zero magnetic field. At the Γ point, the magnons are gaped

out due to the finite single-ion anisotropyD. Notice that for 2-SL MBT, the chemical and magnetic

unit cells are identical. In the density of states ρ(ω), Fig. S10 (right), this gap manifests as a step-

like increase which contributes to two-magnon processes, since it determines the distribution of

scattering intensity.

To model two-magnon Raman scattering processes, we consider the Loudon-Fleury scatter-

ing operator for spin-zero excitations 21–24

OLF =
∑
〈i,j〉

Jij

(
êin · d̂ij

)(
êout · d̂ij

)
~Si · ~Sj, (25)

where Jij are the exchange constants, d̂ij are the unit vectors between sites i and j belonging
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to opposite sublattices (in our case, opposite layers), and êin(out) is the incoming (outgoing) elec-

tric field polarization. In the σ+/σ+ channel, we find that the Raman intensity 22, 25, 26 I(ω) =∑
µ |〈µ|OLF|0〉|2δ (ω − ωµ + ω0) , where |0〉 is the ground state with energy ω0, {|µ〉, ωµ} are

the two-magnon energy and eigenstates obtained from the spin-wave Hamiltonian in the non-

interacting limit. We find that the two-magnon Raman intensity I(ω) captures all the characteris-

tics of the density of states, as shown in Figure S11, where we consider the interlayer exchange

interaction in the Loudon-Fleury scattering operator. Since this is a spin zero excitation, it has no

magnetic field dependence.

Therefore, the absence of magnetic field dependence of a zero-spin excitation and the energy

scale support the hypothesis that the magnetic mode at zero and low-applied magnetic field can be

associated to a two-magnon process.

We note that in LiMnPO4, an antiferromagnetic material with a spin-flop transition at ∼ 4

T 26, the two-magnon responses are observed for magnetic fields above the transition field 25.
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Figure S10: (Left) AFM magnon energies along a high-symmetry path in the BZ as indicated in

the inset. (Right) Magnon density of states as a function of energy. The gray dashed lines link the

magnon band structure with the density of states step-like and peak features.
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1

Figure S11: Two magnon Raman intensity as a function of energy in the σ+/σ+ channel. The red

arrow indicates the step-like feature possibly associated with experimental observation.
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Effect of broken inversion symmetry on the Raman selection rules In the paramagnetic phase,

the point group of the crystal isD3d, which possess inversion symmetry. When inversion symmetry

is broken, for example as the result of strong coupling with the substrate, the point group reduces

to C3v. The correlation relation table is 8

D3 d(−3 m) C3v(3 m)

A1 g A1 (Raman active)

A1u A2

A2 g A2

A2u A1 (Raman active)

Eg E (Raman active)

Eu E (Raman active)

(26)

Infrared modes (such as Eu, A2u) can become Raman active. From the above table, the

modes with frequency 3.6 cm−1 observed in the σ+/σ+ channel at zero field could originate from

an A2u mode. Our DFT calculations (see Sec. 6) indicate that the lowest A2u mode has frequency

38.35 cm−1. We should note that the absence of magnetic field dependence in this A2u phonon is

expected from the morphic effect point of view. General group theory results indicate that non-

degenerate phonons (such as A-type modes) cannot acquire a magnetic field dependent frequency

27. On the other hand, 2-SL MBT E-type modes can acquire a magnetic field-dependent frequency

of the form ω(Hz) ≈ ω(Hz = 0)± κHz/ω(Hz = 0) 27.

We note that below the transition temperature AFM order sets in, which also breaks inversion
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symmetry, and can also change the phonon selection rules.

Figure S12: Monolayer Magnon at the Gamma point

Monolayer Magnon at the Gamma point Theoretical calculation of the monolayer(1-SL) magnon

as a function of external magnetic field, fig.S12. Our limit of detection is 3.5 cm−1 which the

magnon is not observed at the ground state. At 6T the mode should be above our detection range

with an energy of 6 cm−1. In the case of the 1-SL, the magnetic anisotropy could be weak were

the magnon may not be as rebust as that of the 2-SL.

6 First-principles calculations

Electronic spectrum In this section, we calculate the electronic band structure for AFM 2-SL

MBT by taking into account spin-orbit coupling. We find an energy gap of approximately 80 meV

much larger than the observed mode. We use the DFT package VASP 28, 29, the generalized gradient
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approximation (GGA) with PAW potentials with an energy cut-off of 700 eV, a 11×11×1 k-point

Monkhorst pack mesh, gaussian smearing with 0.01 eV width, van der Waals corrections DFT-D3

method of Grimme 30. The parameter U = 5.3 eV is introduced in the Mn atoms, following the

literature 31. Here, we perform a non-collinear calculation in the AFM configuration with SOC

included. To describe the bilayer we have introduced a 16 Å vacuum between bilayers.

Phonon spectrum Lattice-dynamics calculations were performed using the supercell finite-displacement

method implemented in the Phonopy software package 32, with VASP 28, 29 used as the 2nd order

force-constant calculator. Calculations of the phonon supercell size were carried out on 2× 2× 1

expansions of the primitive-cell. For the DFT force calculations we employ the same setup as

described for the electronic band structure.

The phonon spectrum is presented in Fig. S14. In Table 6, we show the phonons at the Γ

point, along with the irreps.
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Figure S13: Electronic band structure along a high-symmetry path in the BZ. We take into account

spin-orbit coupling in this calculation.
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Frequency (THz) Irrep

0.00 Eu

0.00 A2u

0.294211 Eg

0.388741 A1g

0.742719 Eu

0.808097 Eg

1.15487 A2u

1.26773 A1g

1.60084 Eu

1.66799 Eg

1.91658 Eu

2.06342 Eg

2.61844 A2u

2.63803 A1g

2.70516 Eu

2.81849 Eg

3.01212 Eu

3.10706 Eg

3.45274 A1g

3.46327 A2u

3.90221 Eu

3.91189 Eg

4.24963 A1g

4.26792 A2u

4.37695 A1g

4.37978 A2u

4.69355 A2u

4.72188 A1g

Table 4: Γ point phonons and their irreducible representation obtained from first-principles.
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Figure S14: Phonon spectrum along a high-symmetry path in the Brillouin zone.

7 Magnetic fluctuations in paramagnetic phase

Quasielastic scattering In this section, we discuss quasielastic scattering (QES) in paramagnetic

phase. We first apply Bose factor correction to obtain normalized Raman susceptibility:

χ′′(ω)

ω
=

I(ω)

(n+ 1)ω
(27)

where n is the Bose-Einstein factor and I(ω) is the Raman intensity. We observe clear background

changes as a function of the layer thickness (Fig. S15). We attribute this background to quasielastic

scattering for magnetic fluctuations. The spin fluctuations couple the light to the magnetic energy,

giving rise to the peak at zero Raman frequency shift, the linewidth of spin-lattice relaxation time,

and the intensity that is proportional to magnetic specific heat. We extract the quasielastic scatter-

ing using a magnetic fluctuation model,
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χ′′(ω)

ω
∝ CmT

Dk2

ω2 + (Dk2)2 (28)

where Cm is magnetic specific heat and D is the magnetic contribution to thermal conductivity

33–35. The quasielastic scattering is enhanced in thinner layers. This illustrates that the magnetic

fluctuations are stabilized as the magnetic system approaches to bulk regime. Moreover, the spin

fluctuations involve the relaxation channel by coupling with lattice vibrations 33, 36. The spin-lattice

coupling was observed in our previous study.

Figure S15: Layer-dependent quasielastic scattering in paramagnetic phase. The colored shades

represent the extracted quasielastic scattering from magnetic fluctuation model.
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Dynamic Raman susceptibility To compare magnetic fluctuations quantitatively, we extract the

dynamic Raman susceptibility by integrating the normalized Raman susceptibility up to 180 cm−1

using the Kramers-Kronig relations as follows.

χ′′dyn =
2

π

∫ Ω

0

χ′′

ω
dx (29)

8 Temperature dependent dynamic Raman susceptibility

Figure S16: Temperature dependence of dynamic Raman susceptibility for 2 and 3 SL. The grey

shade indicates the critical behavior across the Nèel temperature.

We analyze temperature dependence of dynamic Raman susceptibility χ′′dyn in 2 and 3 SLs

(Supplementary Figure S17). We observe χ′′dyn is peaked at the Nèel temperature, ∼ 17 K. The
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observed Nèel temperature for 2 SLs is consistent with the integrated intensity analysis shown in

Fig. 2c. The difference between 2 and 3 SLs is unclear due to the limited temperature step (2 K).

χ′′dyn is proportional to magnetic specific heat Cm, which shows the critical behavior of magnetic

phase transition 34, 35. This temperature dependence support our analysis of the QES as evidence

for increasing magnetic fluctuations with decreasing layer thickness.
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9 Layer dependent low frequency phonon spectra
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Figure S17: Layer dependence of low frequency Raman spectra in 1 to 5 SLs. The data is taken

at room temperature. The stripe-pattered shade is to block the noise line. The solid lines are

Lorentzian model fits.

Low-frequency phonon spectra taken at room temperature using collinearly polarized inci-

dent and scattered light. The phonon mode corresponds to a breathing mode. The systematic

frequency shift as a function of layer thickness can be modeled by a linear chain model. The mode

observed from the 1-SL corresponds to lattice vibration against the substrate. The presence of this

mode suggest the crystalline structure of 1-SL is retained.
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