
 

 

An AI-enabled predictive analytics dashboard for acute neurosurgical 

referrals  
 

Supplementary Document 

Software Demonstration 

 

A trial dashboard using synthetic data can be accessed on: https://referralsdash.herokuapp.com/ via a desktop web 

browser. Please note it can take up to a minute for the dashboard to load on some internet browsers. 

 

A video demonstrating the functionality of the dashboard presenting the data outlined in this manuscript is available 

on https://youtu.be/Th2vsCpLHbI 

 

Supplementary Methods 

 

Python libraries and dependencies 

 

The following dependencies were used in the creation of this dashboard (see code snippet below) 

 

<CODE> 

'pandas', 1.2.3 

'numpy', 1.19.5 

'matplotlib.pyplot', 3.4.1 

'scipy', 1.6.2 

'plotly', 5.3.1 

'dash', 1.20.0 

'dash_core_components', 1.16.0 

'dash_html_components', 1.1.3 

'requests', 2.25.1 

'statsmodels', 0.11.0 

'prophet', 1.0.1 

'pmdarima' 1.81 

'tensorflow' 2.4.1 

 

Data pre-processing 

 

Following anonymisation, referral data was uploaded as a pandas data-frame. Redundant columns, duplicates 

and erroneous entries were removed, and all dates and times were transformed to python date-time data-types for further 

manipulation. Specialist working diagnoses are designated by the on-call neurosurgical registrar when receiving the 

referral and include a total of 138 different options. The diagnosis is based on the information received at the point of 

the referral and may be modified as further information is shared or after senior review. Specialist diagnoses were 

aggregated into 13 primary diagnostic categories: brain tumour, cauda equina syndrome, congenital, subdural 

haematoma, cranial trauma, degenerative spine, hydrocephalus, infection, spinal trauma, stroke, neurovascular and ‘not 

neurosurgical’ (Supplementary Appendix).  

 

<CODE> 

#Upload anonymised file - either saved as .csv or .pkl 

 

df_all = pd.read_pickle(filename) 

 

#Drop duplicates 

https://referralsdash.herokuapp.com/forecast
https://youtu.be/Th2vsCpLHbI


 

 

df_all.drop_duplicates(inplace=True) 

 

#Drop redundant columns 

df_all.drop(columns = ['Referring Doctor Name','Bleep or Telephone No','MobileNo','Subsequent Doctor 

Grade Name','Subsequent Bleep Number','Subsequent Mobile No','Subsequent Dr Email Address','Subsequent 

Consultant Email Address'], inplace = True) 

 

#Transform date-time entries to datetime datatype 

df_all = transform_to_datetime(df_all, 'Referral Time') 

 

#Convert specialist working diagnosis into primary diagnostic classification based on diagnosis table - 

see Appendix table 

diagnosis_table = pd.read_csv('diagnoses_table.csv', low_memory=False) 

df_all = add_classification_level(df_all, diagnosis_table, 

                               'Primary Classification') 

 

## RELEVANT PROCESSING FUNCTIONS 

 

def match_classification(diagnosis_table, classification_level, 

                            diagnosis): 

 diagnosis_level = diagnosis_table[ 

     diagnosis_table['Specialist working diagnosis'] == 

     diagnosis][classification_level] 

 if (len(diagnosis_level.values) > 0): 

     return diagnosis_level.values[0] 

 return 'no_match' 

 

def add_classification(input_df, diagnosis_table, classification_level): 

 df_copy = copy.deepcopy(input_df) 

 partial_func = partial(match_classification, diagnosis_table, 

                        classification_level) 

 df_copy[classification_level] = df_copy[ 

     'Specialist Working Diagnosis'].apply(partial_func) 

 return df_copy 

     

def transform_to_datetime(df, time_col): 

 copy = df.copy() 

 copy[time_col] = pd.to_datetime(copy[time_col], dayfirst=True) 

 return copy 

 

Geographical information 

 

Using the name of the referring site, an application programming interface (API) request is made to 

openstreetmap.org  to derive the latitude and longitude of referral site locations. This location data is then cached and 

parsed to a geographical plotting function. 

 

<CODE> 

##API REQUEST TO GENERATE LATITUDE AND LONGITUDE CO-ORDINATES 

 

def placemaker(df_all): 

     

 #Parse and sort dataframe 

 geocount = df_all 

 geocount = geocount.groupby(by=['Primary Classification','Referring 

Hospital'])[['Age']].count().unstack(level=0) 

 geocount.columns = geocount.columns.droplevel() 

 geocount.fillna(value=0,inplace=True) 

 geocount['total'] = geocount.sum(axis=1) 



 

 

 geocount.reset_index(inplace = True) 

 

 #Generate empty columns to fill location data in 

 geocount['add'] = 0 

 geocount['lon'] = 0 

 geocount['lat'] = 0 

 geocount = geocount.sort_values(by = 'total', ascending = False) 

 geocount.reset_index(drop=True, inplace=True) 

 

 #Generate list of unique hospitals from dataframe 

 hosplist = geocount['Referring Hospital'].unique() 

 hosplist = hosplist.tolist() 

 

 #For each unique hospital, perform an API request 

 for i,v in enumerate(hosplist): 

 

     address = v 

     url = 'https://nominatim.openstreetmap.org/search/' + urllib.parse.quote(address)+'?format=json' 

     response = requests.get(url).json() 

     geocount.loc[i,['add', 'lon', 'lat']] = [address,response[0]["lon"],response[0]["lat"]] 

      

 #Create seperate dataframe to save location data to cache 

 locmatch = pd.DataFrame() 

 locmatch['Referring Hospital'] = geocount['add'] 

 locmatch['lon'] = geocount.lon 

 locmatch['lat'] = geocount.lat 

 locmatch.to_csv('locmatch2.csv') 

      

 return geocount, hosplist, locmatch 

 

##GENERATE GEOGRAPHICAL FIGURE 

 

def geospatial(df, date1, date2,classification): 

     

 #select data by time 

 geocount = single_period(df, date1, date2) 

 

 #filter df by primary classification and sort 

 if classification != "all": 

        geocount = geocount[geocount['Primary Classification'] == classification] 

 

 geocount = geocount.groupby(by=['Primary Classification','Referring 

Hospital'])[['Age']].count().unstack(level=0) 

 geocount.columns = geocount.columns.droplevel() 

 geocount.fillna(value=0,inplace=True) 

 geocount['total'] = geocount.sum(axis=1) 

 geocount.reset_index(inplace = True) 

 geocount = geocount.sort_values(by='total', ascending=False) 

 geocount.reset_index(drop=True, inplace=True) 

 geocount = geocount.merge(locmatch, on='Referring Hospital') 

 

 #create figure, can be scaled by color or size. Center is the receiving hospital 

 fig5 = px.scatter_mapbox(geocount, 

                          lat="lat", 

                          lon="lon", 

                          hover_name="Referring Hospital", 

                          hover_data=["total"], 

                          zoom=9, 

                          height=300, 

                          size=geocount.total, 



 

 

                          size_max=40, 

                          color="total", 

                          center={ 

                              'lat': 51.6, 

                              'lon': -0.26 

                          }, 

                          opacity=0.7) 

 

 #update layouts 

 fig5.update_layout(mapbox_style='carto-positron') 

 fig5['data'][0]['showlegend'] = False 

 fig5['data'][0]['name'] = 'Referring Site' 

 fig5.update_layout(margin={"r": 0, "t": 0, "l": 0, "b": 0}) 

 fig5.update_layout(autosize=True, width=800, height=800) 

 

 return fig5 

 

## RELEVANT PROCESSING FUNCTIONS 

 

def single_period(df, date1, date2): 

 return df[(df['Referral Time'] >= date1) & (df['Referral Time'] < date2)] 

 

 

Implementation of time-series forecasting models 

 

Three forecasting algorithms were trialled in this work: an automated pipeline which combined Seasonal and 

Trend decomposition using Loess (STL) with an automatic Autoregressive Integrated Moving Average (Auto-ARIMA) 

model, a Convolutional Neural Network - Long Short-Term Memory (CNN-LSTM) network and Prophet. In this section 

we describe how each model was implemented. 

 

Supplementary Table 1. Median weekday and weekend volumes.  

All referrals and the four highest referring categories are shown. p values shown are Bonferroni multiple comparison corrected 

following univariate Mann-Whitney U tests. (NS = not significant) 

 

Diagnostic Classification Median weekday volume Median weekend volume p 

All 34.0 17.5 <0.0001 

 

Brain tumour 6.8 3.5 <0.0001 

Degenerative spine 4.6 2.0 <0.0001 

Neurovascular 2.4 2.0 0.06 

Stroke 2.2 2.0 NS 

 

STL + ARIMA 

 

We performed an exploratory analysis of the time-series using auto-correlation and partial auto-correlation plots 

in combination with augmented Dickey-Fuller testing to determine the degree of stationarity in the data and assist in 

defining initial parameters for seasonal decomposition and upper and lower parameter limits for the auto-ARIMA grid 

search. 

<CODE> 



 

 

### STL/Auto-ARIMA model 

#Run EDA on weekly time-series first to manually check seasonality 

 

#Set variables 

res = [] 

 

#STL period corresponds to expected seasonality. 4 chosen to reflect monthly seasonal changes. 

##Also can use 52 for yearly or 26 for 6-monthly seasonality 

period = 4 

 

#How long into future/out-of-sample to make forecast 

future = 0 

#95% Confidence interval 

confidence = 0.05 

 

#STL decomposition with default parameters and period - can be further tuned using grid search 

res = STL(df, period = period, robust = False).fit() 

 

#Seasonal auto-ARIMA, stepwise can be changed to True for more thorough grid search. Upper and lower 

limits regarding p, q, d determined by initial exploratory analysis of data set 

smodel = pm.auto_arima(res.seasonal, 

                start_p=0, max_p=5, 

                start_q=0, max_q=5, 

                seasonal=False, 

                stepwise = False, 

                start_d=0, max_d=5, 

                trace=False, error_action='ignore'); 

 

#Trend auto-ARIMA 

tmodel = pm.auto_arima(res.trend, 

                start_p=0, max_p=5, 

                start_q=0, max_q=5, 

                seasonal=False, 

                stepwise = False, 

                start_d=0, max_d=5, 

                trace=False, error_action='ignore'); 

 

#Residual auto-ARIMA 

rmodel = pm.auto_arima(res.resid, 

                start_p=0, max_p=5, 

                start_q=0, max_q=5, 

                seasonal=False, 

                stepwise = False, 

                start_d=0, max_d=5, 

                trace=False, error_action='ignore'); 

 

#Modelling seasonality 

modelsea = SARIMAX(res.seasonal, order = smodel.order, seasonal_order= smodel.seasonal_order).fit() 

 

#If Auto-ARIMA fails then use simple differenced d=1 model for trend 

try: 

 modeltrend = ARIMA(res.trend, order = tmodel.order, freq=interval).fit() 

except: 

 modeltrend = ARIMA(res.trend, order = (0,1,0), freq=interval).fit() 

     

#Modelling residual 

modelres = ARIMA(res.resid, order = rmodel.order, freq=interval).fit() 

 

#Forecasting and recomposition 

forecast_season  = modelsea.forecast(future, alpha=confidence) 



 

 

forecast_trend, std_err_trend, confidence_int_trend = modeltrend.forecast(future, alpha=confidence) 

forecast_resid, std_err_resid, confidence_int_resid = modelres.forecast(future, alpha=confidence) 

forecast_final = forecast_season + forecast_trend + forecast_resid 

conf = confidence_int_trend + confidence_int_resid 

 

CNN - LSTM 

<CODE> 

###CNN-LSTM implementation 

 

#Relevant imports 

from tensorflow.keras.models import Sequential 

from tensorflow.keras.layers import LSTM, Dense, Flatten, TimeDistributed, Conv1D, MaxPooling1D 

 

# define input sequence from dataframe 

sequence = df['all'].to_list() 

 

# Set number of steps, keep even 

n_steps = 52 

 

# split into an array of subsequences, X = input 

X, y = sequence_split(sequence, n_steps) 

 

features = 1 

n_seq = 2 

 

# divided subsequence into 2 subsamples 

n_steps2 = n_steps/2 

 

# reshape input data for CNN layer 

X = X.reshape((X.shape[0], n_seq, n_steps2, features)) 

 

# set up sequential stack model 

model = Sequential() 

 

#CNN layer with 64 output filters, kernel size corresponds to length of convolutional window. Input 

shape must match shape from reshape step 

model.add(TimeDistributed(Conv1D(filters=64, kernel_size=1, activation='relu'), input_shape=(None, 

n_steps2, n_features))) 

 

# Down samples by pool size 

model.add(TimeDistributed(MaxPooling1D(pool_size=2))) 

 

#Flatten to single 1D vector 

model.add(TimeDistributed(Flatten())) 

 

#Single LSTM layer with 64 neurons 

model.add(LSTM(64, activation='relu')) 

 

#NN dense layer 

model.add(Dense(1)) 

 

#ADAM optimisation using mse as a cost function 

model.compile(optimizer='adam', loss='mse') 

model.fit(X, y, epochs=500, verbose=0) 

 

## RELEVANT PROCESSING FUNCTIONS 

 

def sequence_split(timeseries, n_steps): 

     



 

 

 #Prepare list variables 

 X, y = list(), list() 

     

 for i in range(len(timeseries)): 

      

     # find index at sequence end 

     end_index = i + n_steps 

      

     # stop code if has gone past total length of sequence 

     if end_index > len(timeseries)-1: 

         break 

      

     # divide sequence into subsamples 

     sub_x, sub_y = timeseries[i:end_index], timeseries[end_index] 

     X.append(sub_x) 

     y.append(sub_y) 

      

 return np.array(X), np.array(y) 

 

Prophet 

 

<CODE> 

 

### Prophet implementation 

 

#Specify dataframe and convert to prophet input 

 

prophetdf = df.reset_index() 

prophetdf.columns = ['ds', 'y'] 

 

#Specify weeks to predict 

prediction = 1 

 

#Specify lockdown period 

lockdown = pd.DataFrame({ 

   'holiday': 'lockdown', 

   'ds': pd.to_datetime(['2020-03-23']), 

   'lower_window': 0, 

   'upper_window': 84, 

 }) 

 

#Set model parameters. Note data is already in weekly format. 

model = Prophet(yearly_seasonality=True, 

             weekly_seasonality=False, 

               daily_seasonality = True, 

             seasonality_mode='additive', 

             interval_width=0.95, 

             changepoint_prior_scale= 0.05, 

             seasonality_prior_scale= 0.1, 

             holidays = lockdown) 

 

#Fit model 

model.fit(prophetdf) 

future = model.make_future_dataframe(periods=prediction,freq='W') 

 

#Make predictions 

forecast = model.predict(future) 



 

 

 

 

 

Usability, acceptability and feasibility 

 

 This study employed a mixed-method design to assess dashboard usability, acceptability and feasibility. 

Participants were recruited from the local neurosurgical centre through mailing lists and were included if they had an 

adequate experience of using the electronic referral system (> 6 months). Participants were excluded if they were aware 

of the development of the dashboard.  

 In each testing session, a demonstration of the dashboard’s capabilities were shown (~ 10-minutes). As an 

example which would simulate a typical service evaluation, participants were shown how to use features to audit a 

particular diagnostic category or time-period. Using a think-aloud protocol, participants were invited to explore the 

functions of the dashboard independently, after which they completed an electronic questionnaire that incorporated three 

validated instruments: the System Usability Scale (SUS), Acceptability of Intervention Measure (AIM) and Feasibility 

of Intervention Measure (FIM) adapted for use. The SUS asks participants to respond to a set of 10 statements using a 

5 point Likert scale, with a composite score above 70 defined as “good” usability.  

In each of the AIM and FIM scales, participants were presented with 4 statements in reference to the 

‘intervention’ (dashboard) and asked to rate these according to a 5-point Likert Scale. These statements have been 

previously assessed for substantive and discriminant content validity 3. Two white-box questions were also incorporated 

into the questionnaire: “Which aspects or features of the dashboard did you find useful?” and “Do you have any 

suggestions for improving the dashboard?”. The questionnaire has been outlined in full in the Supplementary Appendix. 
 

Web application and synthetic data set 

 

 A trial version of the dashboard was hosted using Heroku (www.heroku.com), an online service allowing 

developers to deploy, manage and scale applications. A synthetic data set was created by taking the original anonymised 

data set and scrambling demographic and clinical variables, while keeping frequency of aggregate diagnostic classes 

and outcomes the same. Referral locations were shuffled and replaced with names and locations of English Premier 

League football stadiums to preserve referral site anonymity. 

 

  

https://app.readcube.com/library/829d0e09-047f-41e4-a790-84f30ccd2829/all?uuid=7558850617045383&item_ids=829d0e09-047f-41e4-a790-84f30ccd2829:d0bfdcb7-4042-4ad3-a487-b7f7e519a9af
http://www.heroku.com/


 

 

Supplementary Results 
 

Supplementary Figure 1.  

Out-of-sample one-year referral projections using all three forecasting algorithms trained on all available data. 

 

 
 

 

  



 

 

User experience and implementation 

 

Analysis of coded user feedback explores possible reasons why the dashboard scored well (Supplementary 

Table 2). Many users highlighted the ‘clarity’, ‘usefulness’ and ‘variety’ of graphs and figures [M1, C3, C4, R1, R6, 

R7, R10, R12]. Others commented on dashboard interactivity [R6, R8], in particular the use of drill-down features as 

being particularly positive. Some users found that the dashboard would help with auditing and research. In particular 

they found that it gave important insights ‘into previously inaccessible big-data’ [R1], that it highlighted ‘areas of 

improvement for staff allocation’ [C3], suggested ‘directions for more focused audit and research’ [C5] and that it 

demonstrated ‘why we need to liaise with local referring sites’ [R3]. A few users commented on the AI implementation 

and time-series forecasting functions stating that it would be ‘useful in anticipating demand’ [R1], and that it ‘could be 

implemented easily’ [R8] but ‘unsure how it would be applied day-to-day’ [R12]. Some users did express concerns 

about dashboard access in the department [C1, C2],  whereas others thought there should be additional functionality to 

‘export data’ or review it in more detail [R2, R11]. 

 

 

Supplementary Table 2. User feedback and interview responses 

 

Role Code Which aspects or features of the dashboard did you find 

most useful? (Italics = verbal feedback during think-aloud 

protocol) 

Do you have any suggestions for 

improving the dashboard? (Italics = 

verbal feedback during think-aloud 

protocol) 

Management and 

Administration 

M1 Useful graphs, gives important insights into acute neurosurgical 

data 

/ 

Management and 

Administration 

M2 Will be useful in helping understand acute patient flow such as for 

MSCC (Metastatic spinal cord compression) 

/ 

Management and 

Administration 

M3 More audit work should be done like this. Easy to use  / 

Neurosurgery 

Consultant 

C1 Will be very useful to understand the [acute neurosurgical] service Need to know when it can be accessed by 

whole department 

Neurosurgery 

Consultant 

C2 Comprehensive. [Time-series] is interesting. Very useful Needs better access 

Neurosurgery 

Consultant 

C3 Heatmaps highlight areas of improvement for staff 

allocation/resources. Will help make on-call burden easier 

 

Neurosurgery 

Consultant 

C4 Beautiful figures No 

Neurosurgery 

Consultant 

C5 Useful at suggesting directions for more focused audit and research / 

Neurosurgery 

Registrar 

R1 Useful figures, can give insight into previously inaccessible big 

data. Forecasting will be useful at anticipating demand 

/ 

Neurosurgery 

Registrar 

R2 Really useful More granular outcome data needs to be 

available 

Neurosurgery 

Registrar 

R3 Shows why we need to liaise with local referring sites [in reference 

to geospatial figure] 

/ 

Neurosurgery R4  / 



 

 

Registrar 

Neurosurgery 

Registrar 

R5 The new AI tool was really user friendly and I’m excited to see its 

practical use in research. 

/ 

Neurosurgery 

Registrar 

R6 Nice varied visuals and interaction / 

Neurosurgery 

Registrar 

R7 Very clear figures / 

Neurosurgery 

Registrar 

R8 Instant drill-down and interactivity. Impressive that AI could be 

implemented and used so easily [in reference to forecasting]  

Some functionality (date/time changers) 

was a bit slow 

Neurosurgery 

Registrar 

R9 [in reference to geospatial figure] could help improve in 

determining which sites send poor referrals and how patient 

transfers could be improved 

/ 

Neurosurgery 

Registrar 

R10 Nice graphs Pending information is ambiguous 

Neurosurgery 

Registrar 

R11 Excellent dashboard!  Needs ability to download or export data 

Neurosurgery 

Registrar 

R12 Highly visual. You get a good idea of where referrals are coming 

from. Saves time in looking at spreadsheets 

Unsure where the AI will be used on a day 

to day level 
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Supplementary Appendix 

 

Appendix 1. Diagnostic classification.  

Specialist working diagnoses typically made by on-call neurosurgical registrar, aggregated into diagnostic classes for further 

analysis. Where a working diagnosis was fitting more than one class, the most likely class was used. 



 

 

 
 

 

 

 



 

 

Appendix 2. User feedback questionnaire with usability, acceptability and feasibility assessment.  

Instrument Stem Item 

Acceptability Please rate the following statements 

according to the scale: 

(1) Completely agree 

(2) Somewhat disagree 

(3) Neither agree nor disagree 

(4) Somewhat agree 

(5) Completely agree 

The neurosurgical referral dashboard meets my approval 

The neurosurgical referral dashboard is appealing to me 

I like the neurosurgical dashboard 

I welcome the neurosurgical referral dashboard 

Feasibility Please rate the following statements 

according to the scale: 

(1) Completely agree 

(2) Somewhat disagree 

(3) Neither agree nor disagree 

(4) Somewhat agree 

(5) Completely agree 

The neurosurgical referral dashboard seems implementable 

Using the neurosurgical referral dashboard seems doable 

Using the neurosurgical referral dashboard seems possible 

The neurosurgical referral dashboard seems easy to use 

Usability Please rate the following statements 

according to the scale: 

(1) Strongly disagree 

(2) Somewhat disagree 

(3) Neither agree nor disagree 

(4) Somewhat agree 

(5) Strongly agree 

I think that I would like to use this dashboard frequently 

I found the dashboard unnecessarily complex 

I thought the dashboard was easy to use 

I think that I would need the support of a technical person to be able to use this 

dashboard 

I found the various functions in this dashboard were well integrated 

I thought there was too much inconsistency in this dashboard 

I would imagine that most people would learn to use this dashboard very quickly 

I found the dashboard very cumbersome to use 

I felt very confident using the dashboard 

I needed to learn a lot of things before I could get going with this dashboard 

General Which aspects or features of the dashboard did you find most useful? 

Do you have any suggestions for improving the dashboard? 

Which role would best describe you? 

(1) Neurosurgical Registrar 

(2) Neurosurgical Consultant 

(3) Management and Administration 
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