

An AI-enabled predictive analytics dashboard for acute neurosurgical

referrals

Supplementary Document

Software Demonstration

A trial dashboard using synthetic data can be accessed on: https://referralsdash.herokuapp.com/ via a desktop web

browser. Please note it can take up to a minute for the dashboard to load on some internet browsers.

A video demonstrating the functionality of the dashboard presenting the data outlined in this manuscript is available

on https://youtu.be/Th2vsCpLHbI

Supplementary Methods

Python libraries and dependencies

The following dependencies were used in the creation of this dashboard (see code snippet below)

<CODE>

'pandas', 1.2.3

'numpy', 1.19.5

'matplotlib.pyplot', 3.4.1

'scipy', 1.6.2

'plotly', 5.3.1

'dash', 1.20.0

'dash_core_components', 1.16.0

'dash_html_components', 1.1.3

'requests', 2.25.1

'statsmodels', 0.11.0

'prophet', 1.0.1

'pmdarima' 1.81

'tensorflow' 2.4.1

Data pre-processing

Following anonymisation, referral data was uploaded as a pandas data-frame. Redundant columns, duplicates

and erroneous entries were removed, and all dates and times were transformed to python date-time data-types for further

manipulation. Specialist working diagnoses are designated by the on-call neurosurgical registrar when receiving the

referral and include a total of 138 different options. The diagnosis is based on the information received at the point of

the referral and may be modified as further information is shared or after senior review. Specialist diagnoses were

aggregated into 13 primary diagnostic categories: brain tumour, cauda equina syndrome, congenital, subdural

haematoma, cranial trauma, degenerative spine, hydrocephalus, infection, spinal trauma, stroke, neurovascular and ‘not

neurosurgical’ (Supplementary Appendix).

<CODE>

#Upload anonymised file - either saved as .csv or .pkl

df_all = pd.read_pickle(filename)

#Drop duplicates

https://referralsdash.herokuapp.com/forecast
https://youtu.be/Th2vsCpLHbI

df_all.drop_duplicates(inplace=True)

#Drop redundant columns

df_all.drop(columns = ['Referring Doctor Name','Bleep or Telephone No','MobileNo','Subsequent Doctor

Grade Name','Subsequent Bleep Number','Subsequent Mobile No','Subsequent Dr Email Address','Subsequent

Consultant Email Address'], inplace = True)

#Transform date-time entries to datetime datatype

df_all = transform_to_datetime(df_all, 'Referral Time')

#Convert specialist working diagnosis into primary diagnostic classification based on diagnosis table -

see Appendix table

diagnosis_table = pd.read_csv('diagnoses_table.csv', low_memory=False)

df_all = add_classification_level(df_all, diagnosis_table,

 'Primary Classification')

RELEVANT PROCESSING FUNCTIONS

def match_classification(diagnosis_table, classification_level,

 diagnosis):

 diagnosis_level = diagnosis_table[

 diagnosis_table['Specialist working diagnosis'] ==

 diagnosis][classification_level]

 if (len(diagnosis_level.values) > 0):

 return diagnosis_level.values[0]

 return 'no_match'

def add_classification(input_df, diagnosis_table, classification_level):

 df_copy = copy.deepcopy(input_df)

 partial_func = partial(match_classification, diagnosis_table,

 classification_level)

 df_copy[classification_level] = df_copy[

 'Specialist Working Diagnosis'].apply(partial_func)

 return df_copy

def transform_to_datetime(df, time_col):

 copy = df.copy()

 copy[time_col] = pd.to_datetime(copy[time_col], dayfirst=True)

 return copy

Geographical information

Using the name of the referring site, an application programming interface (API) request is made to

openstreetmap.org to derive the latitude and longitude of referral site locations. This location data is then cached and

parsed to a geographical plotting function.

<CODE>

##API REQUEST TO GENERATE LATITUDE AND LONGITUDE CO-ORDINATES

def placemaker(df_all):

 #Parse and sort dataframe

 geocount = df_all

 geocount = geocount.groupby(by=['Primary Classification','Referring

Hospital'])[['Age']].count().unstack(level=0)

 geocount.columns = geocount.columns.droplevel()

 geocount.fillna(value=0,inplace=True)

 geocount['total'] = geocount.sum(axis=1)

 geocount.reset_index(inplace = True)

 #Generate empty columns to fill location data in

 geocount['add'] = 0

 geocount['lon'] = 0

 geocount['lat'] = 0

 geocount = geocount.sort_values(by = 'total', ascending = False)

 geocount.reset_index(drop=True, inplace=True)

 #Generate list of unique hospitals from dataframe

 hosplist = geocount['Referring Hospital'].unique()

 hosplist = hosplist.tolist()

 #For each unique hospital, perform an API request

 for i,v in enumerate(hosplist):

 address = v

 url = 'https://nominatim.openstreetmap.org/search/' + urllib.parse.quote(address)+'?format=json'

 response = requests.get(url).json()

 geocount.loc[i,['add', 'lon', 'lat']] = [address,response[0]["lon"],response[0]["lat"]]

 #Create seperate dataframe to save location data to cache

 locmatch = pd.DataFrame()

 locmatch['Referring Hospital'] = geocount['add']

 locmatch['lon'] = geocount.lon

 locmatch['lat'] = geocount.lat

 locmatch.to_csv('locmatch2.csv')

 return geocount, hosplist, locmatch

##GENERATE GEOGRAPHICAL FIGURE

def geospatial(df, date1, date2,classification):

 #select data by time

 geocount = single_period(df, date1, date2)

 #filter df by primary classification and sort

 if classification != "all":

 geocount = geocount[geocount['Primary Classification'] == classification]

 geocount = geocount.groupby(by=['Primary Classification','Referring

Hospital'])[['Age']].count().unstack(level=0)

 geocount.columns = geocount.columns.droplevel()

 geocount.fillna(value=0,inplace=True)

 geocount['total'] = geocount.sum(axis=1)

 geocount.reset_index(inplace = True)

 geocount = geocount.sort_values(by='total', ascending=False)

 geocount.reset_index(drop=True, inplace=True)

 geocount = geocount.merge(locmatch, on='Referring Hospital')

 #create figure, can be scaled by color or size. Center is the receiving hospital

 fig5 = px.scatter_mapbox(geocount,

 lat="lat",

 lon="lon",

 hover_name="Referring Hospital",

 hover_data=["total"],

 zoom=9,

 height=300,

 size=geocount.total,

 size_max=40,

 color="total",

 center={

 'lat': 51.6,

 'lon': -0.26

 },

 opacity=0.7)

 #update layouts

 fig5.update_layout(mapbox_style='carto-positron')

 fig5['data'][0]['showlegend'] = False

 fig5['data'][0]['name'] = 'Referring Site'

 fig5.update_layout(margin={"r": 0, "t": 0, "l": 0, "b": 0})

 fig5.update_layout(autosize=True, width=800, height=800)

 return fig5

RELEVANT PROCESSING FUNCTIONS

def single_period(df, date1, date2):

 return df[(df['Referral Time'] >= date1) & (df['Referral Time'] < date2)]

Implementation of time-series forecasting models

Three forecasting algorithms were trialled in this work: an automated pipeline which combined Seasonal and

Trend decomposition using Loess (STL) with an automatic Autoregressive Integrated Moving Average (Auto-ARIMA)

model, a Convolutional Neural Network - Long Short-Term Memory (CNN-LSTM) network and Prophet. In this section

we describe how each model was implemented.

Supplementary Table 1. Median weekday and weekend volumes.

All referrals and the four highest referring categories are shown. p values shown are Bonferroni multiple comparison corrected

following univariate Mann-Whitney U tests. (NS = not significant)

Diagnostic Classification Median weekday volume Median weekend volume p

All 34.0 17.5 <0.0001

Brain tumour 6.8 3.5 <0.0001

Degenerative spine 4.6 2.0 <0.0001

Neurovascular 2.4 2.0 0.06

Stroke 2.2 2.0 NS

STL + ARIMA

We performed an exploratory analysis of the time-series using auto-correlation and partial auto-correlation plots

in combination with augmented Dickey-Fuller testing to determine the degree of stationarity in the data and assist in

defining initial parameters for seasonal decomposition and upper and lower parameter limits for the auto-ARIMA grid

search.

<CODE>

STL/Auto-ARIMA model

#Run EDA on weekly time-series first to manually check seasonality

#Set variables

res = []

#STL period corresponds to expected seasonality. 4 chosen to reflect monthly seasonal changes.

##Also can use 52 for yearly or 26 for 6-monthly seasonality

period = 4

#How long into future/out-of-sample to make forecast

future = 0

#95% Confidence interval

confidence = 0.05

#STL decomposition with default parameters and period - can be further tuned using grid search

res = STL(df, period = period, robust = False).fit()

#Seasonal auto-ARIMA, stepwise can be changed to True for more thorough grid search. Upper and lower

limits regarding p, q, d determined by initial exploratory analysis of data set

smodel = pm.auto_arima(res.seasonal,

 start_p=0, max_p=5,

 start_q=0, max_q=5,

 seasonal=False,

 stepwise = False,

 start_d=0, max_d=5,

 trace=False, error_action='ignore');

#Trend auto-ARIMA

tmodel = pm.auto_arima(res.trend,

 start_p=0, max_p=5,

 start_q=0, max_q=5,

 seasonal=False,

 stepwise = False,

 start_d=0, max_d=5,

 trace=False, error_action='ignore');

#Residual auto-ARIMA

rmodel = pm.auto_arima(res.resid,

 start_p=0, max_p=5,

 start_q=0, max_q=5,

 seasonal=False,

 stepwise = False,

 start_d=0, max_d=5,

 trace=False, error_action='ignore');

#Modelling seasonality

modelsea = SARIMAX(res.seasonal, order = smodel.order, seasonal_order= smodel.seasonal_order).fit()

#If Auto-ARIMA fails then use simple differenced d=1 model for trend

try:

 modeltrend = ARIMA(res.trend, order = tmodel.order, freq=interval).fit()

except:

 modeltrend = ARIMA(res.trend, order = (0,1,0), freq=interval).fit()

#Modelling residual

modelres = ARIMA(res.resid, order = rmodel.order, freq=interval).fit()

#Forecasting and recomposition

forecast_season = modelsea.forecast(future, alpha=confidence)

forecast_trend, std_err_trend, confidence_int_trend = modeltrend.forecast(future, alpha=confidence)

forecast_resid, std_err_resid, confidence_int_resid = modelres.forecast(future, alpha=confidence)

forecast_final = forecast_season + forecast_trend + forecast_resid

conf = confidence_int_trend + confidence_int_resid

CNN - LSTM

<CODE>

###CNN-LSTM implementation

#Relevant imports

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import LSTM, Dense, Flatten, TimeDistributed, Conv1D, MaxPooling1D

define input sequence from dataframe

sequence = df['all'].to_list()

Set number of steps, keep even

n_steps = 52

split into an array of subsequences, X = input

X, y = sequence_split(sequence, n_steps)

features = 1

n_seq = 2

divided subsequence into 2 subsamples

n_steps2 = n_steps/2

reshape input data for CNN layer

X = X.reshape((X.shape[0], n_seq, n_steps2, features))

set up sequential stack model

model = Sequential()

#CNN layer with 64 output filters, kernel size corresponds to length of convolutional window. Input

shape must match shape from reshape step

model.add(TimeDistributed(Conv1D(filters=64, kernel_size=1, activation='relu'), input_shape=(None,

n_steps2, n_features)))

Down samples by pool size

model.add(TimeDistributed(MaxPooling1D(pool_size=2)))

#Flatten to single 1D vector

model.add(TimeDistributed(Flatten()))

#Single LSTM layer with 64 neurons

model.add(LSTM(64, activation='relu'))

#NN dense layer

model.add(Dense(1))

#ADAM optimisation using mse as a cost function

model.compile(optimizer='adam', loss='mse')

model.fit(X, y, epochs=500, verbose=0)

RELEVANT PROCESSING FUNCTIONS

def sequence_split(timeseries, n_steps):

 #Prepare list variables

 X, y = list(), list()

 for i in range(len(timeseries)):

 # find index at sequence end

 end_index = i + n_steps

 # stop code if has gone past total length of sequence

 if end_index > len(timeseries)-1:

 break

 # divide sequence into subsamples

 sub_x, sub_y = timeseries[i:end_index], timeseries[end_index]

 X.append(sub_x)

 y.append(sub_y)

 return np.array(X), np.array(y)

Prophet

<CODE>

Prophet implementation

#Specify dataframe and convert to prophet input

prophetdf = df.reset_index()

prophetdf.columns = ['ds', 'y']

#Specify weeks to predict

prediction = 1

#Specify lockdown period

lockdown = pd.DataFrame({

 'holiday': 'lockdown',

 'ds': pd.to_datetime(['2020-03-23']),

 'lower_window': 0,

 'upper_window': 84,

 })

#Set model parameters. Note data is already in weekly format.

model = Prophet(yearly_seasonality=True,

 weekly_seasonality=False,

 daily_seasonality = True,

 seasonality_mode='additive',

 interval_width=0.95,

 changepoint_prior_scale= 0.05,

 seasonality_prior_scale= 0.1,

 holidays = lockdown)

#Fit model

model.fit(prophetdf)

future = model.make_future_dataframe(periods=prediction,freq='W')

#Make predictions

forecast = model.predict(future)

Usability, acceptability and feasibility

 This study employed a mixed-method design to assess dashboard usability, acceptability and feasibility.

Participants were recruited from the local neurosurgical centre through mailing lists and were included if they had an

adequate experience of using the electronic referral system (> 6 months). Participants were excluded if they were aware

of the development of the dashboard.

 In each testing session, a demonstration of the dashboard’s capabilities were shown (~ 10-minutes). As an

example which would simulate a typical service evaluation, participants were shown how to use features to audit a

particular diagnostic category or time-period. Using a think-aloud protocol, participants were invited to explore the

functions of the dashboard independently, after which they completed an electronic questionnaire that incorporated three

validated instruments: the System Usability Scale (SUS), Acceptability of Intervention Measure (AIM) and Feasibility

of Intervention Measure (FIM) adapted for use. The SUS asks participants to respond to a set of 10 statements using a

5 point Likert scale, with a composite score above 70 defined as “good” usability.

In each of the AIM and FIM scales, participants were presented with 4 statements in reference to the

‘intervention’ (dashboard) and asked to rate these according to a 5-point Likert Scale. These statements have been

previously assessed for substantive and discriminant content validity 3. Two white-box questions were also incorporated

into the questionnaire: “Which aspects or features of the dashboard did you find useful?” and “Do you have any

suggestions for improving the dashboard?”. The questionnaire has been outlined in full in the Supplementary Appendix.

Web application and synthetic data set

 A trial version of the dashboard was hosted using Heroku (www.heroku.com), an online service allowing

developers to deploy, manage and scale applications. A synthetic data set was created by taking the original anonymised

data set and scrambling demographic and clinical variables, while keeping frequency of aggregate diagnostic classes

and outcomes the same. Referral locations were shuffled and replaced with names and locations of English Premier

League football stadiums to preserve referral site anonymity.

https://app.readcube.com/library/829d0e09-047f-41e4-a790-84f30ccd2829/all?uuid=7558850617045383&item_ids=829d0e09-047f-41e4-a790-84f30ccd2829:d0bfdcb7-4042-4ad3-a487-b7f7e519a9af
http://www.heroku.com/

Supplementary Results

Supplementary Figure 1.

Out-of-sample one-year referral projections using all three forecasting algorithms trained on all available data.

User experience and implementation

Analysis of coded user feedback explores possible reasons why the dashboard scored well (Supplementary

Table 2). Many users highlighted the ‘clarity’, ‘usefulness’ and ‘variety’ of graphs and figures [M1, C3, C4, R1, R6,

R7, R10, R12]. Others commented on dashboard interactivity [R6, R8], in particular the use of drill-down features as

being particularly positive. Some users found that the dashboard would help with auditing and research. In particular

they found that it gave important insights ‘into previously inaccessible big-data’ [R1], that it highlighted ‘areas of

improvement for staff allocation’ [C3], suggested ‘directions for more focused audit and research’ [C5] and that it

demonstrated ‘why we need to liaise with local referring sites’ [R3]. A few users commented on the AI implementation

and time-series forecasting functions stating that it would be ‘useful in anticipating demand’ [R1], and that it ‘could be

implemented easily’ [R8] but ‘unsure how it would be applied day-to-day’ [R12]. Some users did express concerns

about dashboard access in the department [C1, C2], whereas others thought there should be additional functionality to

‘export data’ or review it in more detail [R2, R11].

Supplementary Table 2. User feedback and interview responses

Role Code Which aspects or features of the dashboard did you find

most useful? (Italics = verbal feedback during think-aloud

protocol)

Do you have any suggestions for

improving the dashboard? (Italics =

verbal feedback during think-aloud

protocol)

Management and

Administration

M1 Useful graphs, gives important insights into acute neurosurgical

data

/

Management and

Administration

M2 Will be useful in helping understand acute patient flow such as for

MSCC (Metastatic spinal cord compression)

/

Management and

Administration

M3 More audit work should be done like this. Easy to use /

Neurosurgery

Consultant

C1 Will be very useful to understand the [acute neurosurgical] service Need to know when it can be accessed by

whole department

Neurosurgery

Consultant

C2 Comprehensive. [Time-series] is interesting. Very useful Needs better access

Neurosurgery

Consultant

C3 Heatmaps highlight areas of improvement for staff

allocation/resources. Will help make on-call burden easier

Neurosurgery

Consultant

C4 Beautiful figures No

Neurosurgery

Consultant

C5 Useful at suggesting directions for more focused audit and research /

Neurosurgery

Registrar

R1 Useful figures, can give insight into previously inaccessible big

data. Forecasting will be useful at anticipating demand

/

Neurosurgery

Registrar

R2 Really useful More granular outcome data needs to be

available

Neurosurgery

Registrar

R3 Shows why we need to liaise with local referring sites [in reference

to geospatial figure]

/

Neurosurgery R4 /

Registrar

Neurosurgery

Registrar

R5 The new AI tool was really user friendly and I’m excited to see its

practical use in research.

/

Neurosurgery

Registrar

R6 Nice varied visuals and interaction /

Neurosurgery

Registrar

R7 Very clear figures /

Neurosurgery

Registrar

R8 Instant drill-down and interactivity. Impressive that AI could be

implemented and used so easily [in reference to forecasting]

Some functionality (date/time changers)

was a bit slow

Neurosurgery

Registrar

R9 [in reference to geospatial figure] could help improve in

determining which sites send poor referrals and how patient

transfers could be improved

/

Neurosurgery

Registrar

R10 Nice graphs Pending information is ambiguous

Neurosurgery

Registrar

R11 Excellent dashboard! Needs ability to download or export data

Neurosurgery

Registrar

R12 Highly visual. You get a good idea of where referrals are coming

from. Saves time in looking at spreadsheets

Unsure where the AI will be used on a day

to day level

Supplementary References

1. Box, G. E. P., Jenkins, G. M., Reinsel, G. C. & Ljung, G. M. Time Series Analysis Forecasting and Control. (John Wiley &

Sons, Inc., Hoboken, New Jersey, 2016).

2. Taylor, S. J. & Letham, B. Forecasting at Scale. Am Statistician 72, 37–45 (2018).

3. Weiner, B. J. et al. Psychometric assessment of three newly developed implementation outcome measures. Implement Sci 12,

108 (2017).

https://app.readcube.com/library/?style=Nature%20Communications
https://app.readcube.com/library/?style=Nature%20Communications
https://app.readcube.com/library/?style=Nature%20Communications
https://app.readcube.com/library/?style=Nature%20Communications
https://app.readcube.com/library/?style=Nature%20Communications
https://app.readcube.com/library/?style=Nature%20Communications
https://app.readcube.com/library/?style=Nature%20Communications
https://app.readcube.com/library/?style=Nature%20Communications
https://app.readcube.com/library/?style=Nature%20Communications
https://app.readcube.com/library/?style=Nature%20Communications
https://app.readcube.com/library/?style=Nature%20Communications
https://app.readcube.com/library/?style=Nature%20Communications
https://app.readcube.com/library/?style=Nature%20Communications
https://app.readcube.com/library/?style=Nature%20Communications
https://app.readcube.com/library/?style=Nature%20Communications
https://app.readcube.com/library/?style=Nature%20Communications
https://app.readcube.com/library/?style=Nature%20Communications

Supplementary Appendix

Appendix 1. Diagnostic classification.

Specialist working diagnoses typically made by on-call neurosurgical registrar, aggregated into diagnostic classes for further

analysis. Where a working diagnosis was fitting more than one class, the most likely class was used.

Appendix 2. User feedback questionnaire with usability, acceptability and feasibility assessment.

Instrument Stem Item

Acceptability Please rate the following statements

according to the scale:

(1) Completely agree

(2) Somewhat disagree

(3) Neither agree nor disagree

(4) Somewhat agree

(5) Completely agree

The neurosurgical referral dashboard meets my approval

The neurosurgical referral dashboard is appealing to me

I like the neurosurgical dashboard

I welcome the neurosurgical referral dashboard

Feasibility Please rate the following statements

according to the scale:

(1) Completely agree

(2) Somewhat disagree

(3) Neither agree nor disagree

(4) Somewhat agree

(5) Completely agree

The neurosurgical referral dashboard seems implementable

Using the neurosurgical referral dashboard seems doable

Using the neurosurgical referral dashboard seems possible

The neurosurgical referral dashboard seems easy to use

Usability Please rate the following statements

according to the scale:

(1) Strongly disagree

(2) Somewhat disagree

(3) Neither agree nor disagree

(4) Somewhat agree

(5) Strongly agree

I think that I would like to use this dashboard frequently

I found the dashboard unnecessarily complex

I thought the dashboard was easy to use

I think that I would need the support of a technical person to be able to use this

dashboard

I found the various functions in this dashboard were well integrated

I thought there was too much inconsistency in this dashboard

I would imagine that most people would learn to use this dashboard very quickly

I found the dashboard very cumbersome to use

I felt very confident using the dashboard

I needed to learn a lot of things before I could get going with this dashboard

General Which aspects or features of the dashboard did you find most useful?

Do you have any suggestions for improving the dashboard?

Which role would best describe you?

(1) Neurosurgical Registrar

(2) Neurosurgical Consultant

(3) Management and Administration

	An AI-enabled predictive analytics dashboard for acute neurosurgical referrals
	Software Demonstration
	Supplementary Methods
	Python libraries and dependencies
	Data pre-processing
	Geographical information
	Implementation of time-series forecasting models
	Usability, acceptability and feasibility
	Web application and synthetic data set

	Supplementary Results
	Supplementary Figure 1.
	Out-of-sample one-year referral projections using all three forecasting algorithms trained on all available data.
	User experience and implementation

	Supplementary References
	Supplementary Appendix

