Table S1.

3' Mutagenesis

Primer sequences for RT-qPCR, ChIP-qPCR, or mutagensis of the luciferase plasmids

Taqman RT-qPCR	Sequence		
CFTR exon 5 F	AGCTGTCAAGCCGTGTTCTAGATA		
CFTR exon 6 R	ATGAGGAGTGCCACTTGCAAA		
CFTR exon 5/6 probe	CACACGAAATGTGCCAATGCAAGTCCTT		
β2M F	AAGTGGGATCGAGACATGTAAG		
β2M R	GCAAGCAAGCAGAATTTGGA		
β2M probe	5- /56-JOEN/TCA TGG AGG /ZEN/TTT GAA GAT		
	GCC GCA /3IABkFQ/ -3		
SYBR RT-qPCR	Sequence		
β2M F	CTCTCTCTTTCTGGCCTGGAG		
β2M R	TCTGCTGGATGACGTGAGTA		
KLF5 F	ACCTCCATCCTATGCTGCTAC		
KLF5 R	TTTGTGCAACCAGGGTAATC		
CTCF F	GGAGAGCATACCAGCAGTGACT		
CTCF R	TTCCAAGGAGCCACAGCACAAC		
RAD21 F	GTGGAAAGAGACAGGAGGAGTAG		
RAD21 R	AGGTCTTCTGGTACAAGCGGTG		
ChIP-qPCR	Sequence		
11p13 F	TCCTTCCAGGTTTTGGCTCC		
11p13 R	GCCCCAGATCAGGAGAGAGA		
-80.1 kb F	GGGCATTCAAAGAAAAGCAGAAAGC		
-80.1 kb R	ACCCCAGTACAGAGACGTGACA		
-44 kb F	AGTGAGATTAGTTGTCTCTTTTGGAGATAA		
-44 kb R	CCCTTGACTATTTTGTGCACATG		
-35 kb F	ATCTACCTTACCCTGCTGTCCATT		
-35 kb R	TCTGAATTATCAGCCCACAGTCA		
-20.9 kb F	CCGGGATGTTGTTTGAAGCTT		
-20.9 kb R	TTTAAATAGTTGAATAGAGGACGAGATACTTT		
Promoter -2 kb F	TTGAACAATTTTCTGGTGGATAAGTC		
Promoter -2 kb R	ATGCACTAATTGCGACATGATATTC		
Intron 10ab F	TGCTTTATTGAATGGCATTACCTCTA		
Intron 10ab R	AGATGCTTGTGGTAAGGGAGGAG		
+6.8 kb F	TCTTCTTTCCCATTCACCTTTGTC		
+6.8 kb R	TTTTGGTTTCATTTATCAGCACATC		
+48.9 F	GGCATCAGCCAGTCAAGGTT		
+48.9 R	AGCAGAGGGCAAAGTGGTACTT		
Luciforaso			
Construct			
mutagenesis	Sequence		
5' Mutagenesis	AGTTACAAAGGGCTAGCCACTTGCTTCAA		
<u> </u>	taagcttCTAATTCTGTGGCGCAATTTGTGCTCCAG		

CCACATTCTTGCCTCTCCTGACCTAT

gagetcaagTTCACTTTTCTTCTTTTGAGAGT

Table S2.

Primer sequences for the 4C-seq libraries, CRISPR HDR guide sequence, template, and clone screening primers.

4C Viewpoints	Primary Enzyme	Secondary Enzyme		Sequence
CFTR Promoter	NIaIII	Csp6l	Reading Nonreading	TACACGACGCTCTTCCGATCT GCACTTACTATATGCAGGCATG ACTGGAGTTCAGACGTGTGCT CTTCCGATCTTGAAGTGTTCTT TGGATATTGC
-80.1kb	Nlalli	Csp6l	Reading	TACACGACGCTCTTCCGATCT ACTGAGAACTTACAGGGCAGTC
			Nonreading	ACTGGAGTTCAGACGTGTGCT CTTCCGATCTCTGGTAGCTTTT GGTTGAATG
-20.9kb	Nlalli	Dpnll	Reading	TACACGACGCTCTTCCGATCT TTAACAAAGTTTAGGTAAATG ACCA
			Nonreading	ACTGGAGTTCAGACGTGTGCT CTTCCGATCTCAAAGTGAGCT ATTTTGTTTTCTC
+48.9kb	Nlalli	DpnII	Reading	TACACGACGCTCTTCCGATCT GAGTGAGCTTGAAAGCCATG
			Nonreading	ACTGGAGTTCAGACGTGTGCT CTTCCGATCTTGGAACATCGT CAGTGGAAG
Chr11.2516 CRE	NIaIII	Dpnll	Reading	TACACGACGCTCTTCCGATCT CTCCCCAAATTAGCACCATG
			Nonreading	ACTGGAGTTCAGACGTGTGCT CTTCCGATCTAGGCAGCCTTC TTGCTTTCT
APIP Intron 4	Nlalll	DpnII	Reading	TACACGACGCTCTTCCGATCT CCCTCTATAAATAGCCTGAAG ACATG
			Nonreading	ACTGGAGTTCAGACGTGTGCT CTTCCGATCTAACCCTTGAGA AATTTAGATGGT

CRISPR Sequences Sequence

HDR Guide	GTACTCTCAAAAGAAGAAAAGTGA
HDR Template	TAATTCTGTGGCGCAATTTGTGCTCCAGAGCATTCCTGTGGGATCA AACTGAAACTAGTCTCTAACTGAGCCACATTCTTGCCTCTCCTGAC CTATgagctcaagTTCACTTTTCTTCTTTTGAGAGTACAGCCCAGTAAAT CACTTGGACAAGAAAACTCATCTCAT
HDR Screening F	CTGTATTGTACTACCCATTTACGTGAG
HDR Screening R	GTAGGGAAAGCCTACACTCTCA

As described in Fig.1, but here showing viewpoints at A) the -80.1kb 5' TAD boundary, and B) the *CFTR* promoter. 4C-seq data for Calu-3 treated with either negative control siRNA or siRNA targeting KLF5. Domainograms for relative read enrichment of each condition are shown together with the read quantification track. Between each condition, the comparison shows the subtraction of KLF5si results from NCsi, calculating loss or gain of looping interaction.

Figure S2. CFTR expression in KLF5-null 16HBE140⁻ cells

A. RT-qPCR for CFTR in parental WT 16HBE14o⁻, clonal WT cells generated in the CRISPR experiment (n=2), and KLF5-null lines (n=3). cDNA was prepared from four passages of RNA for the bulk WT, three passages of each of the clonal WT, and two passages of KLF5-null cell lines. B. Western blot probed with antibodies specific for CFTR (CFF-596), KLF5, or β -tubulin as a loading control. Protein samples are from Calu-3 cells treated with negative control siRNA or siRNA targeting KLF5, 16HBE14o⁻ clonal WT cells, or KLF5-null 16HBE14o⁻ lines (n=3, as shown).

-20.9kb viewpoint

As described in Fig. 2, but here showing a viewpoint at the -20.9kb CRE. 4C-seq data are shown for clonal WT (n=2) or KLF5-null (n=3) 16HBE14o⁻ clones. The subtraction of the read quantification tracks of each KLF5-null clone 4C-seq from the WT cells in log₂ scale is shown. Regions of specific interest are marked by bars and arrows in blue for the clonal WT and red for the KLF5-null clones.

+48.9kb 3' TAD viewpoint

Figure S4. Changes in 3D structure around the +48.9kb 3' TAD boundary in KLF5-null 16HBE14o⁻ cells

As described in Fig.2, but here showing viewpoint at the +48.9kb 3' TAD boundary. 4C-seq data are shown for clonal WT (n=2) or KLF5-null (n=3) 16HBE140⁻ clones. Domainograms for relative read enrichment of each condition are shown together with the read quantification track. Regions of specific interest are marked by bars and arrows in blue for the clonal WT and red for the KLF5-null clones.

Figure S5. CRISPR homology directed repair mutagenesis of the KLF5 binding motif at the -35kb CRE

Sequence within the -35kb CRE upstream of *CFTR* containing the 3' KLF5 binding site underlined in red (RSAT motif similarity p-value = 0.01). Mutated region is shown in red, with the introduced SacI site, gRNA sequence, and PAM sequence detailed.

Figure S6. KLF5 depletion alters the 3D structure of the Chr11p13 locus

4C-seq data are shown for Calu-3 cells treated with negative control siRNA (NCsi) or siRNA targeting KLF5 (KLF5si). The chr11p13 region, genes contained within the locus, select DNasel hypersensitive sites (DHS), KLF5 ChIP-seq IDR, and ATAC-seq in Calu-3 cells are shown in order above. 4C-seq data generated using the 11.2516 DHS (A) and APIP Intron 4 (B) viewpoints are shown. Read quantification tracks in the IGV genome browser are shown for NCsi or above for KLF5si. Between the conditions are read tracks of the subtraction of the KLF5si 4C-seq from the NCsi cells in log₂ scale. Sites of interest and labelled with red arrows.