Electronic Supplementary Information

A "Turn-On" fluorescent probe for sensitive and selective detection of fluoride ions based on aggregation-induced emission

Man Du, Baolong Huo, Mengwen Li, Ao Shen, Xue Bai, Yaru Lai, Jiemin Liu^{*}, Yunxu Yang^{*}

Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China

Corresponding Author: Yunxu Yang, Jiemin Liu E-mail addresses: yxyang@ustb.edu.cn (Yunxu Yang);

liujm@ustb.edu.cn (Jiemin Liu)

Contents:

Table S1 Comparisons of proposed method with recently reported strategi	es for F-
detection.	3
Fig. S1 Structures of probes recently reported for F ⁻ detection.	4
Fig. S2 Fluorescent spectra of HBT in the THF/H ₂ O mixture at different	nt water
fractions.	5
Fig. S3 UV-vis spectra of PBT in the absence and presence of F ⁻ .	5
Fig. S4 Effect of pH on the Fluorescence intensity of PBT.	6
Fig. S5 ¹ H NMR spectrum of compound HBT in $CDCl_3$ -d ₁ .	7
Fig. S6 ¹³ C NMR spectrum of compound HBT in CDCl ₃ -d ₁ .	7
Fig. S7 HRMS spectrum of compound HBT in CH ₃ CN.	8
Fig. S8 ¹ H NMR spectrum of compound PBT in $CDCl_3$ -d ₁ .	8
Fig. S9 13 C NMR spectrum of compound PBT in CDCl ₃ -d ₁ .	9
Fig. S10 HRMS spectrum of compound PBT in CH ₃ CN.	9
Detection limit	
Fig. S11 The linear relationship between the fluorescence intensity	and F
concentration.	10
Fig. S12 Job's plot for determining the stoichiometry of PBT and F ⁻ .	11
Kinetic studies	
Fig. S13 Pseudo-first-order kinetic plot.	12
Fig. S14 ESI-MS spectrum of PBT upon addition of F ⁻ .	13
Fig. S15 The fluorescence spectra change of PBT upon addition of	F ⁻ from
toothpastes.	14
References	15

Literature	Mechanism	Fluorophore	Wavelength/nm	Detection limit	Dynamic range	Response time
[1]	P-O cleavage	Dichlorofluorescein	$\lambda_{ex} = 510 \text{ nm},$ $\lambda_{em} = 536 \text{ nm}$	9.8 nM	_	10 min
[2]	Formation of hydrogen bonds with F ⁻	1,8-Naphalimide and Benzothizazole	$\lambda_{ex} = 415 \text{ nm}$	0.41µM	_	10 s
[3]	AIE	Tetraphenylethene	$\lambda_{em} = 560 \text{ nm}$	6×10-4 M	—	2 min
[4]	Si-O cleavage	Luciferin	_	1 µM	0 to 100 μM	_
[5]	Si-O cleavage	7-Diethylaminocoumarin	$\lambda_{\rm ex} = 490 \ {\rm nm}$	1.2×10 ⁻⁸ M	0 to 4 \times 10 ⁻⁵ M	_
[6]	Si-C cleavage	BODIPYs	$\lambda_{em} = 614-687$ nm	14.9-92.7 nM	_	20-40 min
[7]	Si -O cleavage	7-Hydroxycoumarin	$\lambda_{ex} = 375 \text{ nm}$	0.285 μΜ	0 to 60 μM	—
[8]	Lewis acid anion receptors	Naphthalene diimide	$\lambda_{ex1} = 475 \text{ nm},$ $\lambda_{em1} = 545 \text{ nm},$ $\lambda_{ex2} = 362 \text{ nm},$ $\lambda_{em2} = 530 \text{ nm},$	17 μM; 18 μM	0 to 400 μM; 0 to 230 μM	_
[9]	Deprotonation of the N-H proton	1,8-Naphthalimide	$\lambda_{ex} = 460 \text{ nm},$ $\lambda_{em} = 525 \text{ nm}$	1.8 µM	0 to 23.3 µM	_
[10]	Si-O cleavage	Naphthalimide	$\lambda_{ex} = 430 \text{ nm},$ $\lambda_{em} = 550 \text{ nm}$	5.27 µM	0 to 160 μM	50 s
[11]	Si-O cleavage	Spiropyran	_	8.3×10 ⁻⁸ M	5.0×10 ⁻⁸ to 1.0×10 ⁻⁸ μM	30 min
[12]	Deprotonation	Benzimidazole	$\lambda_{ex} = 425 \text{ nm},$ $\lambda_{em1} = 510 \text{ nm},$ $\lambda_{em2} = 592 \text{ nm}$	3.45×10 ⁻¹⁰ M		1 min
[13]	Breakage of the B-O bonds	QDs	$\lambda_{ex} = 350 \text{ nm},$ $\lambda_{em} = 625 \text{ nm}$	0.4 µM	0.4 to 2.8 µM	—
Our work	P-O cleavage AIE	HBT	$\lambda_{ex} = 335 \text{ nm},$ $\lambda_{em} = 470 \text{ nm}$	3.8 nM	0.5 to 10 μM	2 min

Table S1. Comparisons of proposed method with recently reported strategies for F⁻ detection.

"—" Not mentioned.

Fig. S1. Structures of probes recently reported for F⁻ detection.

Fig. S2. Fluorescent spectra of HBT (10 μ M) in the THF / H₂O mixture at different water fractions, λ_{ex} =335 nm, λ_{em} =470 nm.

Fig. S3. UV-vis spectra of **PBT** in the absence and presence of F^- . [**PBT** is 10 μ M], [F⁻ is 20 μ M] in a mixture of THF and Tris buffer solution (pH 8.0), (1 : 9, v / v).

Fig. S4. Effect of pH on the Fluorescence intensity of **PBT** in the absence and presence of F⁻. [**PBT** is 10 μ M], [F⁻ is 20 μ M] in a mixture of THF and buffer solution (1 : 9, v / v, 25 °C), λ_{ex} =335 nm, λ_{em} =470 nm.

Fig. S6. ¹³C NMR spectrum of compound HBT in CDCl₃-d₁.

Fig. S9. ¹³C NMR spectrum of compound **PBT** in $CDCl_3$ -d₁.

Fig. S10. HRMS spectrum of probe compound PBT in CH₃CN.

Detection limit

The detection limit for F⁻ ions was calculated by the fluorescence titration experiments according to the reported method. A good linear relationship between the fluorescence intensity and F⁻ concentration (0.5 μ M-10 μ M) could be obtained (R²=0.9995). The value obtained for the F⁻ was found to be 3.8 nM by the equation of L_{OD}=3 δ/m (δ was the standard deviation of the blank solution and *m* is the absolute value of the slope between intensity versus F⁻ concentration). δ = 0.4880, *m*= 389.7332.

Fig. S11. The linear relationship between the fluorescence intensity and F⁻ concentration (0.5-10 μ M). All measurements were taken in a mixture of THF and Tris buffer solution (pH 8.0), (1 : 9, v / v) at 25 °C. λ_{ex} =335 nm, λ_{em} =470 nm.

Fig. S12. Job's plot for determining the stoichiometry of PBT and F⁻. The total concentration of PBT and F⁻ was 10 μ M in a mixture of THF and Tris buffer solution (pH 8.0), (1 : 9, v / v) at 25 °C. λ_{ex} =335 nm, λ_{em} =470 nm.

Kinetic studies:

The reaction of **PBT** (10 μ M) with F⁻ in THF (pH 8.0, 90 % Tris-HCl) was monitored using the fluorescence intensity at 470 nm. The reaction was carried out at 25 °C. The *pseudo*-first-order rate constant for the reaction was determined by fitting the fluorescence intensities of the samples to the *pseudo*-first-order equation:

 $\operatorname{Ln}\left[\left(\mathrm{F_{t}}-\mathrm{F_{min}}\right)/\mathrm{F_{min}}\right]=-k't$

Where F_t and F_{min} are the fluorescence intensities at 470 nm at time t and the maximum value obtained after the reaction was complete. k' is the *pseudo*-first-order rate constant. The *pseudo*-first-order plots for the reaction of **PBT** with 2 equiv. of F^- is shown in Fig. S13, the *pseudo*-first-order rate constant k' = $1/t_1$ =0.01269 min⁻¹.

Fig. S13. *Pseudo*-first-order kinetic plot of the reaction of **PBT** (10 μ M) with F⁻ (2 equiv.) a mixture of THF and Tris buffer solution (pH 8.0), (1 : 9, v / v) at 25 °C. $k = 0.01269 \text{ min}^{-1}$.

Fig. S14. ESI-MS spectrum (positive ion mode) of **PBT** upon addition of F⁻ in CH₃CN. (a) only **PBT**, (b) the isolated aggregates of compound after **PBT** reacted with F⁻ for 10 min.

Fig. S15. The fluorescence spectra change of PBT upon addition of F⁻ from toothpastes 1, 2, 3, 4, 5 and 6. λ_{ex} =335 nm, λ_{em} =470 nm.

References

- [1] H. Y. Kim, H. G. Im and S. K. Chang, Dyes and Pigments, 2015, 112, 170-175.
- [2] X. X. Chen, T. H. Leng, C. Y. Wang , Y. J. Shen and W. H. Zhu, Dyes and Pigments, 2017, 141, 299-305.
- [3] M. Bineci, M. Baglan and S. Atılgan, Sensors and Actuators B, 2016, 222, 315-319.
- [4] B. W. Ke, W. X. Wu, L. Wei, F. B. Wu, G. Chen, G. He and M. Y. Li, Anal. Chem., 2015, 87, 9110-9113.
- [5] Y. M. Shen, X. Y. Zhang, Y. Y. Zhang, H. T. Li and Y. D. Chen, Sens. Actuators, B, 2018, 258, 544-549.
- [6] L. Fu, F. F. Wang, T. Gao, R. Huang, H. He, F. L. Jiang and Y. Liu, Sens. Actuators, B, 2015, 216, 558-562.
- [7] X. L. Yu, L. L. Yang, T. T. Zhao, R. L. Zhang, L. Yang, C. L. Jiang, J. Zhao, B. H Liu and Z. P Zhang, *RSC Adv.*, 2017, 7, 53379-53384.
- [8] E. S. Luis, O. T. Adrian, K. Y. Anatoly and P. L. Georgina, *Anal. Lett.*, 2016, 49, 2301-2311.
- [9] M. M. Yu, J. Xu, C. Peng, Z. X. Li, C. X. Liu and L. H. Wei, *Tetrahedron*, 2016, 72, 273-278.
- [10] X. J. Zheng, W. C. Zhu, H. Ai, Y. Huang and Z. Y. Lu, *Tetrahedron Lett.*, 2016, 57, 5846-5849.
- [11] J. Tao, P. Zhao, Y. H. Li, W. J. Zhao, Y. Xiao and R. H. Yang, *Anal. Chim. Acta*, 2016, **918**, 97-102.
- [12] Shweta, A. Kumar, Neeraj, S. K. Asthana and K. K. Upadhyay, New J. Chem., 2017, 41, 5098-5104.
- [13] Y. J. Li, Q. Sun, L. Su, L. L. Yang, J. Zhang, L. Yang, B. H. Liu, C. L. Jiang and Z. P. Zhang, *RSC Adv.*, 2018, 8, 8688-8693.