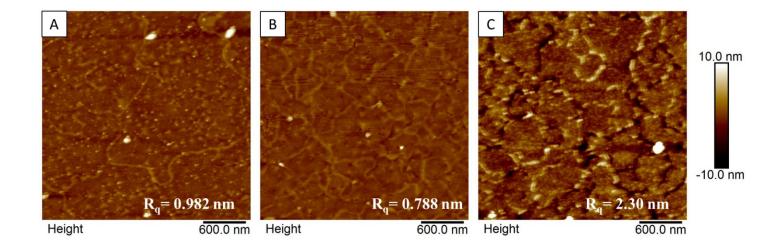
**Supporting Information** 

## Oxide removal and stabilization of bismuth thin films through chemically bound thiol layers

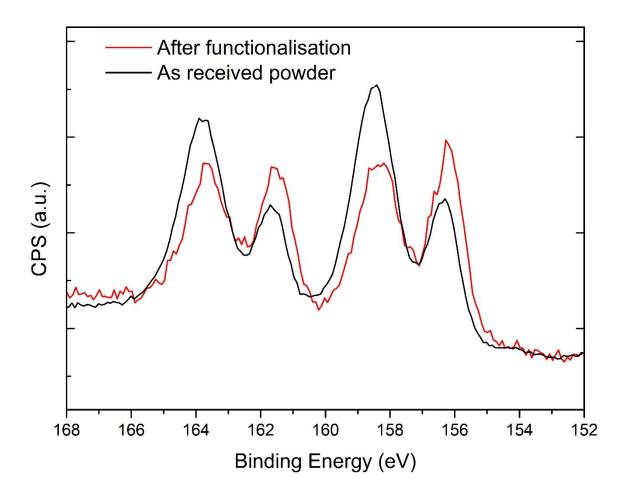
Giuseppe Alessio Verni<sup>†,+,§</sup>, Brenda Long<sup>†,+,§</sup>\*, Farzan Gity<sup>+</sup>,

Martin Lanius<sup>c</sup>, Peter Schüffelgen<sup>c</sup>, Gregor Mussler<sup>c</sup>, Detlev Grützmacher<sup>c</sup>, Jim Greer<sup>+‡</sup>

and Justin D. Holmes<sup>†, +, §</sup>


†School of Chemistry, University College Cork, Cork, T12 P2FY, Ireland. †Tyndall National Institute, University College Cork, Cork, T12 PX46, Ireland. §AMBER@CRANN, Trinity College Dublin, Dublin 2, Ireland. °Peter Grünberg Institute 9 & Jülich Aachen Research Alliance (JARA-FIT), Research Center Jülich, Germany. ‡Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo, China

**Table S1.** Percentages of the elemental Bi and Bi-X components for the Bi 4f core level XPS scans acquired on the samples


| Sample                          | Bi 4f <sub>5/2</sub> | Bi 4f <sub>7/2</sub> | BiX 4f <sub>5/2</sub> | BiX 4f <sub>7/2</sub> |
|---------------------------------|----------------------|----------------------|-----------------------|-----------------------|
| Wafer as rec.                   | 23.5                 |                      | 76.5                  |                       |
| Wafer + 1 mM thiol solution     | 28.0                 |                      | 72.0                  |                       |
| Wafer + 10 mM thiol solution    | 59.1                 |                      | 40.9                  |                       |
| Wafer + 100 mM thiol solution   | 64.9                 |                      | 35.1                  |                       |
| Wafer + 100 mM thiol + air exp. | 57.5                 |                      | 42.5                  |                       |
| Powder as rec.                  | 23.5 76.5            |                      | 5.5                   |                       |
| Powder + 100 mM                 | 45.6                 |                      | 54.4                  |                       |
|                                 |                      |                      |                       |                       |



**Figure S1**. Pictures of (a) Flask under  $N_2$  containing powder and a 100 mM solution of 1-dodecanethiol in IPA and (b) vial in air containing powder and 100 mM solution of 1-dodecanethiol in IPA. Note in both cases the colour of the solution turning yellow.



**Figure S2**. AFM images and RMS roughness values of (a) as received Bi film on Si, (b) Bi film after annealing at 180 °C for 3 hours, (c) annealed Bi surface after functionalisation with 1-dodecanethiol. Note in image (c) the non-continuity of the film which causes some areas of the wafer to reoxidise.



**Figure S3**. Overlaid XPS spectra of Bi 4f core level of Bi powder before and after reaction with 1-dodecanethiol solution in IPA at 100 mM concentration. Graphs have been normalised to the minimum of the as received sample to underline the oxide reduction effect.