
Supplementary Material for: “A parameter
representing missing charge should be considered
when calibrating action potential models”

S1 SUPPLEMENTARY MATERIAL
S1.1 Units correction in Ten Tusscher-Panfilov 2006 (TTP06) CellML File

Inconsistencies in units were observed between the TTP06 CellML file taken from the CellML repository
and the Ten Tusscher and Panfilov (2006) paper where the model was described. However, the CellML
model is consistent with the original C code published by Ten Tusscher on her website. The units and
values corrected for the present study are summarised in Table S1 below.

Table S1. Correction of the units of Ten Tusscher-Panfilov 2006 model from the CellML repository

Parameter Published model value Corrected value

F 96485 C.mmol−1 96.485 C.mmol−1

R 8314.472 J.mol−1.K−1 8.314472 J.mol−1.K−1

Cm 0.185 µF 1.85 ×10−4µF
Vc 0.016404 µm3 0.016404 nL
Vsr 1.094 ×10−3µm3 1.094 ×10−3nL
Vss 5.468 ×10−5µm3 5.468 ×10−5nL
GCaL 3.98 ×10−5L.F−1.s−1 3.98 ×10−2L.F−1.s−1

In most of the equations involving F or R, these parameters are used in the ratio RT
F , so the rescale of both

by a factor 1/1000 did not change anything in the model solving. The only exception is the computation of
ICaL , the L-type calcium current, where the ratio RT

F 2 is used. This is compensated by the rescale of the
conductance GCaL by a factor 1000.

The total membrane capacitance of TTP06 was modelled initially with the value Cm = 0.185µF which
is orders of magnitude away from the experimental O(100pF ), consistent with the corrected value.

The volumes of the cell compartments were not physiological in µm3 and match much better with
experimental knowledge when corrected to nL.

These changes have been made to the CellML file in the Physiome Model Repository (Yu et al., 2011).
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Missing charge in electrophysiology models

S1.2 Comparison of algebraic voltage equations
Studies from the literature proposed integration constants in their algebraic expression of Vm that take

into account the charge of omitted species in various ways. The integration constant binding the ionic
concentrations and the membrane voltage took various forms in the literature and represented slightly
different concepts: V0 (Varghese and Sell, 1997; Endresen et al., 2000), C0 (Hund et al., 2001), Qns

(Jacquemet, 2007; Livshitz and Rudy, 2009). These constants have essentially the same modelling properties,
as they involve writing the model using the algebraic voltage expression to satisfy a conservation law. The
integration constants in the algebraic voltage equations reported here are compared in Table S2 in the
Supplementary Materials.

The transmembrane voltage is generated by a difference of electrical potential between the intra- and
extracellular spaces. As such, the integration constants in the algebraic expression of Vm account for all
the electrically-charged species, and their expression and value depend on the species that are included
in the model. The complexity of the interpretation of these constants is therefore due to the fact that
the extracellular space does not have a null electrical charge, contrary to Jacquemet’s assumption when
computing Qns (Jacquemet, 2007).

To compute the “non-specific charge Qns” as defined by Jacquemet (2007) (same as Q0 from Livshitz
and Rudy (2009)), the external concentrations are omitted:

CmVm = ViF
∑
X

∑
k

Vk
Vi
zX [X]tot, k +Qns. (S1)

Varghese & Sell, as well as Jacquemet (Jacquemet, 2007), noted that the “principle of Faraday: Q = CV,
rewritten in terms of ionic concentrations rather than the charge” applies (Varghese and Sell, 1997). Eq. S1
is the direct application of the Faraday equation to models where extracellular concentrations are constant.

CmVm corresponds physiologically to the difference in total charge across the cell membrane or the net
charge of the cell. The double sum of Eq. S1 corresponds to the total charge of modelled species across
all intracellular compartments, and Qns is therefore the sum of the remaining charges: non-modelled
intracellular charges and total extracellular charges.

Similarly to Qns, the constant C0, as defined by Hund et al. (2001), includes the total concentration
non-modelled charges and the concentration of extracellular charges for modelled species. C0 can be
understood as the concentration of charge leading to Qns, so it suffers from the same limited physiological
meaning.

Table S2 compares the various expression used in the literature to express the integration constant arising
from the conservation principle. Note that in the expressions by Varghese and Sell (1997), the constant is
labeled C0 but is consistent with a voltage. Also, in their expressions, the volumes of the compartments of
the junctional and network sarcoplasmic reticula were omitted. We corrected these omissions in the present
piece of work, in particular when writing Eq. 2 (main text).
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Table S2. Table comparing the different expressions of the integration constant in the algebraic voltage equations from literature.

Reference Label Expression Note

Varghese and Sell
(1997) C0 No expression

Did not explore it
further, focused on

consequences of the
implicit conservation

law.
Endresen et al.

(2000) V0 v0 = −FVi
Cm

([K+]ext + [Na+]ext + 2[Ca2+]ext)
v0 expressed as voltage

offset.

Hund et al. (2001) C0 No expression

C0 computed so that
initial conditions for

intracellular
concentrations match
with initial voltage in

the model.

Jacquemet (2007) Qns Qns = ViF [NS]i

[NS]i corresponds to
the non-specific charge
concentration. Can be
computed following
Endresen or Hund

approach.

Livshitz and Rudy
(2009) Q0 CmV = −Q0 +Qstim + F

∑
X

∑
y VkzX [X]y

“Q0 accounts for
charge contributed by
nonspecific, mainly

anionic, charged
intracellular molecules

(e.g. impermeable
proteins)”.

S1.3 Changing the voltage expression of a model to the algebraic expression
Changing to the algebraic expression for voltage in the model requires to account exactly for all the

charged species included in the model. This ensures that the model satisfies the conservation of charge
principle, but requires extra caution when building and using AP models. Therefore, we aim at providing in
this section the reader with help on how to proceed.
S1.3.1 Computation of total Ca2+ concentration

To compute Γ0 in a model, it is necessary to compute the total concentrations of all ions, including the
buffered ones. This section provides an example of how to compute total intracellular calcium concentrations,
with buffer equations as in TTP06 and ORd CiPA. Usually, the models include buffers for Ca2+, but any
total ionic concentration can be computed following the example below. Total intracellular concentrations
can be added as variables of the corresponding compartment. It is recommended to include them in the
same compartment as the buffered concentrations, to make easier the eventual reading by other modellers.
Ten Tusscher 2006 model

In the TTP06 model, the free calcium concentration in the cytosolic space is updated taking into account
a buffer:

dCai,free
dt

= BCai

 ∑
currents

I × Cm

VcF
+

∑
transporters

Tyy′
Vy′

Vy

 ,

with:
BCai =

1

1 +Bufc
Kbufc

(Cai+Kbufc)2

.
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BCai is the fraction of free Ca2+, Kbufc is the equilibrium constant between the buffered Ca2+ and the free
Ca2+, and Bufc is the concentration of buffer.

The expression of the buffer could be integrated so that:

Cai,total = Cai + Cai
Bufc

Cai +Kbufc
,

and
dCai,total

dt
=

∑
currents

I × Cm

VcF
+

∑
transporters

Tyy′
Vy′

Vy
.

The total concentration of calcium in the subspace and the SR are computed similarly for TTP06:

Cass,total = Cass + Cass
Bufss

Cass +Kbufss
,

Casr,total = Casr + Casr
Bufsr

Casr +Kbufsr
.

O’Hara CiPA 2017 model
In ORd CiPA, the free calcium concentration is computed similarly to TTP06 model, however, there are

two buffers this time:

BCai =
1

1 + cmmaxkcm
(Cai+kcm)2

+ trmaxktr
(Cai+ktr)2

Like previously, the total concentrations of calcium in the different compartments are computed as follows:

Cai,total = Cai,free ×
(

1 +
cmmax

Cai,free + kcm
+

trmax

Cai,free + ktr

)
,

Cass,total = Cass,free ×
(

1 +
BSRmax

Cass,free +KmBSR
+

BSLmax

Cass,free +KmBSL

)
,

Cajsr,total = Cajsr,free ×
(

1 +
csqnmax

Cajsr,free + kcsqn

)
.

S1.3.2 Computing Γ0 from the initial conditions
Γ0 is computed after integrating Eq. 1, meaning that the integration constant must be computed to use the

algebraic voltage expression. This can be done at initial state by re-arranging Eq. 6.

For TTP06, using the previous notation:

Γ0 = Ki +Nai + 2Cai,total + 2Casr,total
Vsr
Vc

+ 2Cass,total
Vss
Vc
−Naext −Kext − Caext −

V Cm

FVc
.

For ORd CiPA :

Γ0 = Ki+Nai+2Cai,total+
(
Kss +Nass + 2Cass,total

) Vss
Vc

+2Casr,total
Vsr
Vc
−Naext−Kext−Caext−

V Cm

FVc
.
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S1.3.3 Swapping the voltage expression in your model
Before updating the expression for voltage in your model, it is advised to check that the difference between

intra- and extracellular concentrations follows the voltage. It is recommended to run the model with the
derivative voltage expression, and plot the voltage and the difference between intra- and extracellular
concentrations, namely the part of Eq. 6 in brackets. The two curves should overlay, with a rescaling factor
and offset. If not, this gives a hint about which concentration was omitted in the computation of total ionic
intracellular concentrations.

To illustrate with TTP06 model, the voltage expression becomes:

V =
FVc
Cm

(
Ki +Nai + 2Cai,total + 2Casr,total

Vsr
Vc

+ 2Cass,total
Vss
Vc
−Naext −Kext − 2Caext − Γ0

)
.

And the equation of voltage for ORd CiPA becomes:

V =
FVc
Cm

(
Ki +Nai + 2Cai,total + (Kss +Nass + 2Cass,total)

Vss
Vc

+ 2Casr,total
Vsr
Vc
−Naext −Kext − 2Caext − Γ0

)
.

S1.3.4 Troubleshooting
When trying to use the algebraic expression for voltage in a model provided with its derivative expression,

several problems can arise. The list below points out eventual sources of “bugs” that were encountered
during the present work and that could lead to a mismatch between the two voltage expressions:

• When using an user-defined value of Γ0 for simulations, the voltage will be computed according to
Eq. 6. However, due to the prefactors, small changes in Γ0 lead to big differences in voltage, with
approximately 0.01 mM changes in Γ0 leading to 100 mV variations. Therefore, when changing the
value of Γ0, we recommend to adjust the initial concentration of potassium [K+]i to maintain the initial
voltage at physiological values. Otherwise, voltage can be pushed to values of several kV in extreme
cases. The advantage of adjusting [K+]i is that its range is high enough to enable a wide scan of Γ0

values, while remaining positive.
• Note that the total membrane capacitance is computed differently from one model to another. It is

usually introduced either as a model parameter, or as a product of capacitance per area unit and cell
surface, or sometimes as a combination of capacitance per area unit, surface to volume ratio, and
volume of the cell.

• The model must satisfy the conservation of charge principle. All the currents (including the stimulus
current!) carry charges; all fluxes result in changes in ionic concentrations that should be included.

• If adjustment is needed for the model to satisfy the conservation of charge principle, check that the right
currents are used to update the right concentrations. For example, Grandi 2010 model includes only the
intracellular potassium concentration in the bulk cytosol, clamped to its initial value. The Na+ −K+

exchanger currents, however, are computed in the sarcolemma and junctional domains. This means
that in sarcolemma and junctional domains, 3 Na+ ions are exchanged for 2 K+ ions, which should
be accounted for in there. Thus, when considering dynamic potassium concentrations in the Grandi
2010 model, one needs to add variables for the K+ concentrations in the different compartments of the
model.

• Verify that all of the charge-carrying species were included in the voltage equation. One can check
that by derivating over time the algebraic expression of voltage and comparing it with the sum of the
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ionic currents through the membrane (derivative voltage expression). When derivating, do not forget
that intracellular concentrations are not constant (important for buffered species).

• Verify that all of the buffered forms of the ions are taken into account for total ionic concentrations
computation.

• The value for Γ0 must be computed using the initial conditions for total ionic concentrations. This is
particularly relevant for Ca2+ ions which are often buffered.

• The variable for voltage must be demoted from “state variable” to “computed variable”. Depending on
the software/language used to solve the model, this might lead to problems.

S1.4 Convergence towards paced limit cycle
For this section, the absolute and the relative solver tolerances are set to the same value, ranging from

10−9 to 10−5. TTP06 and ORd CiPA models are both used to simulate 3000 paces. The intracellular
potassium concentration at the end of the AP (at time t = 0ms) is recorded and plotted for the extreme
solver tolerances in Figures S1 to S4. Overall, the potassium concentrations converge towards the same
value, no matter the solver tolerance used. The zooms on the phase of the simulation after the 2000th beat
show however that the models do not always converge as the higher level view might suggest.

For high solver tolerances, the derivative voltage model is not even converging towards a paced limit
cycle. Indeed, because of numerical error, the conservation of charge is not preserved anymore and there
is divergence of the intracellular concentrations. On the other hand, the algebraic voltage model does
converge, even though the reached value is visibly noisy around the limit cycle value. Note that the two
models are mathematically identical, meaning that the differences in observed behaviours are only due to
the numerical solving.

For low solver tolerances, both models seem to converge nicely to the same limit cycle value. The zoom
on the “converged” phase shows that the derivative voltage model actually still drifts away, even with solver
tolerances set to 10−9. The slope of the drift is reducing with the fine solver tolerance though. In practice,
this deviation would not induce any visible variations of the outputs usually studied. Still, this supports

To grade the stability of the model, a score taking into account the noisy variations around limit cycle
values and the drifting away of [K+]i was needed. From the higher scale view, it seemed that 2000 beats
was a good cutoff to observe deviation from the limit cycle. Therefore, the 2000th beat was selected as
reference, and the stability compared to that value. To quantify the deviation, the averaged distance to the
reference value seemed to be indicative enough. To have a more visual map representing all together the
various scales of deviation, a log-rescale was applied on the score..
S1.4.1 Comparison of solving speed between derivative and algebraic voltage expressions

The relative simulation time of solving the underlying sytem equations with the different voltage
expressions were also compared, and similar maps are plotted in Figure S5 for the TTP06 and ORd
CiPA models. These maps are mostly smooth, with the possible exception of ORd CiPA written with the
algebraic voltage. As expected, increasing the solver tolerance increases the time-steps hence the speed of
solving of the model. Also, using the algebraic voltage expression switches the voltage from a state variable
to a computed variable. Having one variable less to compute should enable acceleration of the solving by
CVODE. However, the maps of speed of solving do not agree with these expectations. Actually, as the same
system can be described with the two expressions for voltage, this means that the system is overdetermined
when written with the voltage as state variable. Therefore, writing the voltage as a computed variable breaks
the overdetermination of the system. However, the time-step needed to meet with the solver tolerance
does not change, and neither does the speed of solving. The break of the overdetermination of the system
of equations describing the model could explain the improvement in simulation stability observed above
though.

6



Missing charge in electrophysiology models

Figure S1. Convergence of intracellular potassium to its limit cycle value, for TTP06 model, for solver
tolerances set to 10−5 . The left panel shows the convergence towards the paced limit cycle from the initial
conditions. The right panel shows a zom on the evolution of the intracellular potassium after the 2000th

beat where the model is supposed to have already reached the paced limit cycle.

Figure S2. Convergence of intracellular potassium to its limit cycle value, for TTP06 model, for solver
tolerances set to 10−9 . The left panel shows the convergence towards the paced limit cycle from the initial
conditions. The right panel shows the evolution of the intracellular potassium after the 2000th beat where
the model is supposed to have already reached the paced limit cycle.

Figure S3. Convergence of intracellular potassium to its limit cycle value, for ORd CiPA model, for solver
tolerances set to 10−5 . The left panel shows the convergence towards the paced limit cycle from the initial
conditions. The right panel shows a zom on the evolution of the intracellular potassium after the 2000th

beat where the model is supposed to have already reached the paced limit cycle.
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Figure S4. Convergence of intracellular potassium to its limit cycle value, for ORd CiPA model, for solver
tolerances set to 10−9 . The left panel shows the convergence towards the paced limit cycle from the initial
conditions. The right panel shows the evolution of the intracellular potassium after the 2000th beat where
the model is supposed to have already reached the paced limit cycle.

Figure S5. Map of speed for A: TTP06 model and B: ORd CiPA model, Left: using the algebraic voltage
expression, and Right: using the derivative voltage expression. The colorcode corresponds to the speed of
solving of the model. The darker the map, the lower the simulation duration, hence the faster the simulation
the simulation.
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