Supporting Information

Vanillin derived a carbonate dialdehyde and a carbonate diol: novel platform monomers for sustainable polymers synthesis

De Bai^{,[a]#} Qin Chen^{,[a]#} Yang Chai^{,[a]} Tianhua Ren^{,[a]} Caijuan Huang^{,[a]} Qiang Zheng^{,[a]} Ian D. V. Ingram^{,[b]} Michael North^[b] and Haibo Xie^{*[a]}

^[a] Department of Polymeric Materials & Engineering, College of Materials & Metallurgy, Guizhou University, West Campus, Huaxi District, Guiyang, P. R. China, 550025; E-mail:hbxie@gzu.edu.cn

^[b] Green Chemistry Centre of Excellence, Department of Chemistry, University of York, York (UK) YO10 5DD

SFigures

Figure S5. FTIR spectra of BFMC and BHMC derived from vanillin.

Figure S6. ¹H NMR of PCEA-1 (400 MHz DMSO-d₆, *for terminal group).

Figure S7. ¹³C NMR of PCEA-1 (125 MHz DMSO-d₆).

Figure S9. ¹³C NMR of PCEA-2 (101 MHz DMSO-d₆).

Figure S10. FTIR spectra of BFMC and representative resulting PCEAs.

Figure S11. DSC curves of PCEAs.

Figure S13. GPC analysis of PCEAs, (PCE-1a, M_n =3456g/mol, D=1.4; PCE-1b, M_n =4663g/mol, D=1.6; PCE-1c, M_n =4734g/mol, D=1.5; PCE-2a, M_n =4575g/mol, D=1.6; PCE-2b, M_n =5251g/mol, D=1.3.

Figure S15. ¹H NMR of PCE-1 (400 MHz CDCl3).

Figure S17. ¹H NMR of PCE-2 (400 MHz DMSO-d₆).

Figure S19. FTIR spectra of BHMC and representative resulting PCEs.

Figure S21. TGA and DTG curves of PCEs.

Figure S23. GPC analysis of PCE-1b, M_n=7925 g/mol, PDI=1.61.

Figure S27. ¹³C NMR of PCU-1 (101 MHz DMSO-d₆).

Figure S29. ¹³C NMR of PCU-2 (101 MHz DMSO-d₆).

Figure S30. FTIR spectra of BHMC and representative resulting PCUs.

Figure S31. DSC curves of PCUs.

Figure S32. TGA and DTG curves of PCUs.

E-factor analysis of the process toward bio-based polyesters

R. A. Sheldon has proposed the environment impact factor (*E*-factor) to quantify the sustainability of a process¹⁻³. The *E*-factor is calculated by kilograms of waste generated including 10% of solvent losses divided by kilograms of desired product (Equation 1).

$$\text{E-factor} = \frac{\sum m (rawmaterials) + \sum m (reagents) + \sum m (solvents) \times 10\% - m (product)}{m (product)}$$

Herein we provide details of our *E*-factor analysis of the bio-based polyesters (Tables S1-S6). The overall process *E*-factor of vanillin-based polymer **PCEA-2b**, **PCE-1b** and **PCU-1b** were determined as 4.350, 12.135 and 8.976, kg/kg, respectively, which are in accordance with Sheldon's analysis of bulk and fine chemicals that have an *E*-factor of 4-50¹⁻³.

Table S1. Material input-output table for the process toward PCEA-2b.

Table S2. E-factor analysis of the process toward PCEA-2b.

step number	Raw material (kg)	Reagent (kg)	Solvent	Product (kg)	step E-Factor	E-Factor
1	0.337	0.254	39.750	0.514	7.885	4.052
2	1.000	0.00	2.981	1.000	0.298	0.298
Total	0.823	0.254	42.731	1.000		4.350

Table S3. Material input-output table for the process toward **PCE-1a**.

3	tetrahydrofuran	Solvnet		72.11	0.985	0.022	0.072	7.350	10.000			
	5		PCE-1a	416.38						1.000	2.402	73.40 %

Table S4. E-factor analysis of the process toward PCE-1a.

step number	Raw material (kg)	Reagent (kg)	Solvent	Product (kg)	step E-Factor	E-Factor
1	0.825	0.621	92.750	1.257	7.531	9.464
2	1.688	0.000	7.350	1.094	1.215	1.330
3	1.601	0.006	7.350	1.000	1.342	1.342
Total	1.764	0.627	107.45	1.000		12.135

Table S5. Material input-output table for the process toward **PCU-1b**.

HO O vanillin	\sim + $\begin{array}{c} CI \\ CI $	BFMC Yield: 93%	O Nal O Th r.t.	BH ₄ HO HF ;6h			[~] он ^с 4 ос	08U;THF 0°C;24h CN ^{7R} NCO	* 0			
					BHN Yield:	1C 74%			PCU-1:	R=		Yield: 73%
Step number	Input material	Input type	output material	MW (g/mol)	Density (g/mL)	Equiv	Input mol	input weight (kg)	Input volume (L)	Output weight (kg)	Output mol	Yield
	vanillin	Raw material		152.15		1.000	3.060	0.466				
	triphosgene	Raw material		296.75		0.167	0.510	0.151				
1	triethylamine	Reagent		101.19	0.728	1.500	4.591	0.465				
	dichloromethane	Solvnet		84.93	1.325			66.250	50.000			
			BFMC	330.29						0.940	2.846	93%
	BFMC	Intermediate		330.29		1.000	2.846	0.940				
2	Sodium borohydride	Raw material		37.83		3.000	8.538	0.323				
2	tetrahydrofuran	Solvnet		72.11	0.735			5.880	8.000			
			BHMC	334.32						0.818	2.448	86%
	BHMC	Intermediate		334.32		1.000	2.448	0.818				
	diphenylmethane diisocyanate	Raw material		250.25		1.000	2.448	0.613				
3	DBU	Reagent		152.24	1.019	0.030	0.073	0.011				
5	tetrahydrofuran	Solvnet		72.11	0.735			7.350	10.000			
			PCU-1b	556.61						1.000	1.797	73.40 %

Table S6. E-factor analysis of the process toward PCU-1b.

step number	Raw material (kg)	Reagent (kg)	Solvent	Product (kg)	step E-Factor	E-Factor
-------------	-------------------	--------------	---------	--------------	---------------	----------

1	0.617	0.465	66.250	0.940	7.198	6.766
2	1.263	0.000	5.880	0.818	1.262	1.033
3	1.431	0.011	7.350	1.000	1.177	1.177
Total	1.553	0.476	79.48	1.000		8.976