Supporting Information

for

Magnetic Ordering in a Vanadium-Organic Coordination Polymer Using a Pyrrolo[2,3-

d:5,4-d']bis(thiazole)-based Ligand

Yulia A. Getmanenko,^a* Christopher S. Mullins,^b Vladimir N. Nesterov,^c Stephanie Lake,^b

Chad Risko^b and Ezekiel Johnston-Halperin^a

Figure S1. Photographs of single crystal of 4-hexyl-4*H*-pyrrolo[2,3-*d*:5,4-*d*']bis(thiazole) (5).

Figure S2. Photographs of a single crystal of 4-hexyl-2,6-diiodo-4*H*-pyrrolo[2,3-*d*:5,4-*d*']bis(thiazole) (**6**)

Figure S3. Photographs of a single crystal of ligand 7.

Figure S4. Overlay of the four independent molecules of compound **7** (1 is green; 1A is red; 1B is blue; 1C is brown).

Figure S5. Structures of dithieno[3,2-b:2',3'-d] pyrrole (DTP) derivative (9) and diselenopheno[3,2-b:2',3'-d] pyrrole (DSP) derivative (10) investigated computationally.

Figure S6. Pictorial representations and energies of the HOMO and LUMO for an *N*-methyl derivative of ligand **7** (**L7-methyl**), DTP derivative **9**, and DSP derivative (**10**) as determined at the OT-LC- ω PBE/cc-PVDZ level of theory.

Figure S7.(*a*) UV-vis absorption spectra of ligand **7** in dichloromethane; (*b*) a photograph of a solution of ligand **7** in dichloromethane; (*c*) a photograph of the hybrid material **8** in a sealed quartz tube inside of a plastic straw.

Figure S8. (*left*) Fit for the $\beta = 0.0115 \text{ K}^{-3/2}$ for 1st batch YAG-XIV-095-a (estimated Curie temperature T_C ~ 110 K); (*right*) fit for the $\beta = 0.0105$ and 0.011 K^{-3/2} for 2nd batch of **8** (YAG-XVI-022-b; estimated Curie temperature T_C ~ 115 K and 110 K, respectively).

Figure S9. Hysteresis of 8 (first batch, YAG-XV-095-a) at (left) 50 K and (right) a 100 K.

Figure S10. ZFC and FC temperature dependence of magnetization of material **8** (second independently prepared sample, YAG-XVI-022-b, ~1.1 mg of material **8** sealed in quartz tube).

Figure S11. Hysteresis of **8** at 95 K (second independently prepared material, ~1.1 mg of YAG-XVI-022-b). Saturation magnetization is comparable to the 1st batch of **8** at 100 K (**Figure S9**, right).

Figure S12. Hysteresis of material **8** (*top*) at 5 K, (*bottom left*) at 50 K and (*bottom right*) at 95 K for a second independently prepared sample (batch YAG-XVI-022-b). Saturation magnetization reached 8.4 emu·g⁻¹ at 500 Oe at 5 K (comparable to 7.8 emu·g⁻¹ measured for the first batch YAG-XIV-095-a).

CCDC entry no.	1819816	1819817	1868490
Crystal system	Monoclinic	Monoclinic	Triclinic
Space group	Сс	Ст	P-1
a, Å	11.438(2)	16.8767(2)	15.8211(3)
b, Å	11.940(2)	33.8581(5)	15.8245(3)
c, Å	9.874(2)	4.4165(1)	16.6689(2)
α, deg	90	90	79.740(1)
β, deg	107.370(2)	91.650(1)	66.715(2)
γ, deg	90	90	73.107(2)
V, Å ³	1287.0(4)	2522.60(7)	3658.41(12)
Mol formula	$C_{12}H_{15}N_3S_2$	$C_{12}H_{13}I_2N_3S_2$	$C_{18}H_{13}N_7S_2$
fw	265.39	517.17	391.47
Formula units per cell (Z)	4	6	8
D _{calcd} (Mg/m ³)	1.370	2.043	1.422
λ (Mo/Cu Kα), Å	0.71073	0.71073	1.54184
μ (mm ⁻¹)	0.395	3.979	2.794
Absorption correction	Semi-empirical from	Semi-empirical from	Semi-empirical from
	equivalents	equivalents	equivalents
Total reflections	6623	36525	48939
Independent reflections	2763	5624	14247
R _{int}	0.0183	0.0237	0.0754
Data/res/parameters	2763 / 2 / 156	5624 / 5 / 260	14247 / 0 / 977
$R1^{a} [I \ge 2\sigma(I)]$	0.0203	0.0187	0.0468
wR2 ^b (all data)	0.0509	0.0479	0.1199
GOF on F ²	n F ² 1.052		1.023
$\Delta \rho(\text{max}), \Delta \rho(\text{min}) (e/Å^3)$	0.141, -0.128	0.888, -0.681	0.583, -0.385

 Table S1. X-ray data and processing parameters for compounds 5-7.

 ${}^{a}\overline{R1} = \Sigma ||F_{o}| - |F_{c}||/\Sigma ||F_{o}|; {}^{b}R2 = \{\Sigma [w(F_{o}^{2} - F_{c}^{2})^{2}]/\Sigma [w(F_{o}^{2})^{2}]\}^{\frac{1}{2}}$

Table S2. Short intermolecular contacts between molecules of compound 7.

Molecules 1…1A/1C	Distance Å	Molecules 1B/1A…1C/1B	Distance Å
S(1)…S(2A)	3.439(1)	S(1B)…S(2C)	3.500(1)
S(1)…N(6A)	2.974(2)	S(1B)…N(6C)	2.993(2)
S(2)…N(6A)	3.052(2)	S(2B)…N(6C)	3.091(2)
N(4)…S(1A)	3.070(2)	N(4B)…S(1C)	3.125(2)
N(4)…S(2A)	3.002(2)	$S(2C) \cdots N(4B)$	3.056(2)
C(2)…N(7C)	3.006(2)	S(1A)N(6B)	3.325(2)

	Compound 7	L7-methyl
Bond label	Distance (Å)	Distance (Å)
C2-N2	1.369	1.371
C3-N2	1.378	1.371
C3-C5	1.467	1.461
C5-C6	1.352	1.359
C2-C6	1.463	1.462
N2-C13	1.473	1.450
C2-N1	1.300	1.295
N1-C1	1.378	1.365
C1-S1	1.786	1.801
S1-C6	1.712	1.729
C3-N3	1.294	1.295
N3-C4	1.381	1.365
C4-S2	1.776	1.801
\$2-C5	1.720	1.729
Angle label	<u>Bond angle (°)</u>	<u>Bond angle (°)</u>
C1-S1-C6	88.21	87.90
C4-S2-C5	87.98	87.89
C1-N1-C2	107.23	108.66
C3-N3-C4	107.26	108.73

Table S3. Comparison of the single-crystal X-ray structure for compound **7** and the OT-LC- ω PBE/cc-PVDZ optimized geometry for L7-methyl.

Table S4. Select information pertaining to the $S_0 \rightarrow S_1$ excitations as determined via TDDFT calculations at the OT-LC- ω PBE/cc-PVDZ level of theory.

Malaanla	Е	λ	C	Electronic Configuration	0/
Molecule	[eV]	[nm]	J	Electronic Configuration	% contribution
L7-methyl	2.26	549	0.37	HOMO–1→LUMO;	43
				HOMO→LUMO	56
TCNQ	3.13	396	1.08	HOMO→LUMO	100
TCNE	4.80	258	0.43	HOMO→LUMO	98
TCNB	4.62	268	0.04	HOMO–1→LUMO;	64
				HOMO→LUMO+1	31
9	2.14	578	0.0036	HOMO-3→LUMO;	37
				HOMO-2→LUMO;	7
				HOMO-1→LUMO	54
	2.55	486	1.37	HOMO→LUMO	100
				HOMO-3→LUMO;	33
10	2.00	618	0.0104	HOMO-2→LUMO;	6
				HOMO-1→LUMO	58
	2.53	491	1.30	HOMO→LUMO	98