LC-ESI-QTOF-MS/MS characterization and estimation of antioxidant potential of phenolic compounds from different parts of lotus (*Nelumbo Nucifera*) seed and rhizome

Zihan Zhu¹, Biming Zhong^{1,2}, Zihong Yang¹, Wanrong Zhao¹, Linghong Shi¹, Ahsan Aziz¹, Abdur Rauf^{3*}, Abdullah S.M. Aljohani⁴, Fahad A. Alhumaydhi⁵ and Hafiz Ansar Rasul Suleria^{1*}

¹School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia

²CAS Key Laboratory of Quantitative Engineering Biology, Synthetic Biochemistry Center, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China

³Department of Chemistry, University of Swabi, Swabi, Anbar-23561 KPK, Pakistan

⁴Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia

⁵Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia

Corresponding authors: Hafiz A.R. Suleria - School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; ORCID: 0000-0002-2450-0830; <u>hafiz.suleria@unimelb.edu.au</u>; **Abdur Rauf;** Department of Chemistry, University of Swabi, Swabi, Anbar-23561 KPK, Pakistan; Email: abdurrauf@uoswabi.edu.pk

S2

Figure S1: LC-ESI-QTOF-MS/MS basic peak chromatograph (BPC) for characterization of phenolic compounds of Australian grown lotus; (a) The pulp of lotus rhizome in negative ionization mode; (b) The pulp of lotus rhizome in positive ionization mode; (c) The peel of lotus rhizome in negative ionization mode; (d) The peel of lotus rhizome in positive ionization mode; (e) The knot of lotus rhizome in negative ionization mode; (f) The knot of lotus rhizome in positive ionization mode; (g) The embryo of lotus seed in negative ionization mode; (h) The embryo of lotus seed in positive ionization mode; (i) The cotyledon of lotus seed in positive ionization mode; (i) The cotyledon of lotus seed in positive ionization mode.

(a)

Figure S2. The LC-ESI-QTOF-MS/MS characterization of 2-hydroxybenzoic acid; (a) A chromatograph of 2-hydroxybenzoic acid (Compound 2, Table 3), in the negative mode of ionization [M – H]⁻ identified in all five lotus samples including lotus seed embryo (LSE); (b) Mass spectra of 2-hydroxybenzoic acid with observed/precursor of m/z137.0248; (c) MS / MS spectrum of 2-hydroxybenzoic acid reflecting the product ion of m/z 93, confirmation via online LC-MS library and database. Fragmentation of 2hydroxybenzoic acid in negative mode $[M - H]^-$, with precursor of m/z 137, showing product ion of m/z 93 due to the loss of a CO₂ (44 Da).

100 m/z

110

120

130

70

80