Enzymatic Synthesis and Self-Assembly of Glycolipids: Robust Selfhealing and Wound Closure Performance of Assembled Soft Materials

Yadavali Siva Prasad,^a Balasubramani Saritha,^a Ayyapillai Tamizhanban,^a Krishnamoorthy Lalitha,^a Sakthivel Kabilan,^a C. Uma Maheswari,^a Vellaisamy Sridharan,^b and Subbiah Nagarajan^{*a,c}

^a Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur – 613401, Tamil Nadu, India

^b Department of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla), District-Samba, Jammu-181143, Jammu and Kashmir, India.

^c Department of Chemistry, National Institute of Technology Warangal, Warangal -506004, Telangana, India.

Contents S.#		Title	Page No.
1	Table S1.	Solvents/ oils used for gelation studies.	3
2	Figure S1.	Images of oleogel and composite gel formed in paraffin oil and DMSO+Water (1:4).	3
3	Figure S2	Images of oleogel formed by compound 2d & 2e in Eucalyptus oil	4
4	Figure S3	SAXD patterns of xerogel derived from compound 3d.	4
5	Figure S4	FTIR spectra of xerogel derived from compound 3d.	4
6	Figure S5	Optical microscopy images of oleogel and composite gel.	5
7	Figure S6	Effect of oleogel and composite gel on wound healing in experimental rats.	5
8	Figure S7	Pictures displaying wound closure at day1, 11, 17 and 21 respectively.	6
9	Figure S8	Biochemical profile of granulation tissue obtained from the skin-excised wound of di□erent experimental groups	6
10	Figure S9	¹ H NMR spectrum of glycolipid 3a in CDCl ₃ +DMSO-d ₆	7
11	Figure S10	¹³ C NMR spectrum of glycolipid 3a in CDCl ₃ +DMSO-d ₆	7
12	Figure S11	¹ H NMR spectrum of glycolipid 3b in CDCl ₃ +DMSO-d ₆	8
1	Figure S12	¹³ C NMR spectrum of glycolipid 3b in CDCl ₃ +DMSO-d ₆	8
3	Figure S13	¹ H NMR spectrum of glycolipid 3c in CDCl ₃ +DMSO-d ₆	9
14	Figure S14	¹³ C NMR spectrum of glycolipid 3c in CDCl ₃ +DMSO-d ₆	9
15	Figure S15	¹ H NMR spectrum of glycolipid 3d in CDCl ₃ +DMSO-d ₆	10
16	Figure S16	¹³ C NMR spectrum of glycolipid 3d in CDCl ₃ +DMSO-d ₆	10
17	Figure S17	ESI-MS spectra of glycolipid 3d in CDCl ₃ +MeOH	11
18	Figure S18	¹ H NMR spectrum of glycolipid 3e in CDCl ₃ +DMSO-d ₆	12
19	Figure S19	¹³ C NMR spectrum of glycolipid 3e in CDCl ₃ +DMSO-d ₆	12
20	Figure S20	ESI-MS spectra of glycolipid 3e in CDCl ₃ +MeOH	13

Entry	Oil/solvent	Gelation of glycolipids					
•		3 a	3b	3c	3d	3e	
1	Olive oil	S	S	S	S	S	
2	Eucalyptus oil	S	S	S	G (2%)	G (2%)	
3	Hazelnut oil	S	S	S	S	S	
4	Jojoba oil	S	S	S	S	S	
5	Sesame oil	S	S	S	S	S	
6	Soya bean oil	S	S	S	S	S	
7	Linseed oil	S	S	S	PG	PG	
8	Paraffin oil	-	-	PG	$\begin{array}{c} G \\ (1\% \text{ w/v}) \end{array}$	$\frac{G}{(1.2\% \text{ w/v})}$	
9	Neem oil	S	S	S	S	S	
10	Castor oil	S	S	S	S	S	
11	Dichlorobenzene	S	Р	Р	Р	Р	
12	Benzene	Р	Р	Р	Р	Р	
13	Cyclohexane	Ι	Ι	Ι	Р	Р	
14	N-Heptane	Ι	Ι	Ι	Ι	Ι	
15	1,4- dioxane	Ι	Ι	Ι	Ι	Ι	
16	1-Butanol	Р	Р	Р	Р	Р	
17	Toluene	Р	Р	Р	Р	Р	
18	Xylene	Р	Р	Р	Р	Р	
19	Dimethylformamide	S	S	S	Р	Р	
20	DMSO+Water (1:4)	Р	Р	Р	G (2.5% w/v)	G (2.5% w/v)	
S = solution; P = precipitate; I = insoluble; G = gel; PG = partial gel. Critical gelation concentration (CGC) is							

Table S	1. Solvents/	oils used	for gelation	studies
I GOIC D		ono abea	101 Schutton	bruares.

presented in parentheses [% (w/v)]

(1)

(3)

(2)

Figure S1. (1,2) Image of oleogel (A) and composite gel (B) formed in paraffin oil and (3) images of gel (a) and composite gel (b) formed in DMSO+Water (1:4).

Figure S2. (A & B) Image of oleogel formed by compound **3d & 3e** in Eucalyptus oil (C, D & E) Gel not formed by compounds **3a**, **3b** and **3c**.

Figure S3. SAXD patterns of xerogel derived from compound 3d.

Figure S4. FTIR spectra of xerogel derived from compound 3d.

Figure S5. Optical microscopy images of (a-h) oleogel and (i-p) composite gel.

Figure S6. Effect of oleogel and composite gel on wound healing in experimental rats.

Figure S7: (a-e) Pictures displaying wound closure at day1, 11, 17 and 21 respectively.

Figure S8. Biochemical profile of granulation tissue obtained from the skin-excised wound of di \Box erent experimental groups. Values of mean ± SE of each group. P < 0.05 (*), P<0.01 (**), P<0.001(***). Comparison of treated groups with control groups. The results were analysed statistically using one-way analysis of variance (ANOVA) followed by Dunnett's test for multiple comparisons. OG1-Organogel 1; OG2-Organogel 2 and CG-Composite gel

Figure S9. ¹H NMR spectrum of glycolipid 3a in CDCl₃+DMSO-d₆

Figure S10. ¹³C NMR spectrum of glycolipid 3a in CDCl₃+DMSO-d₆

Figure S12. ¹³C NMR spectrum of glycolipid **3b** in CDCl₃+DMSO-d₆

Figure S14. ¹³C NMR spectrum of glycolipid **3c** in CDCl₃+DMSO-d₆

Figure S15. ¹H NMR spectrum of glycolipid 3d in CDCl₃

Figure S16. ¹³C NMR spectrum of glycolipid 3d in CDCl₃

Figure S17. ESI-MS spectra of glycolipid 3d in CDCl₃+MeOH

Figure S18. ¹H NMR spectrum of glycolipid 3e in CDCl₃

Figure S19. ¹³C NMR spectrum of glycolipid 3e in CDCl₃

Figure S20. ESI-MS spectra of glycolipid **3a-e** in CDCl₃+MeOH

Glycolipid 3a

Glycolipid 3b

Glycolipid 3c

Glycolipid 3d

