Supplementary File

Aqueous hybrids of amino-functionalized nanosilica and acrylamide-based polymer for enhanced oil recovery

Jie Cao^{a*}, Tao Song^a, Yuejun Zhu^{b, c}, Xiujun Wang^{b, c}, Shanshan Wang^{b, c}, Jingcheng Yu^a, Yin Ba^a,

Jian Zhang ^{b, c*}

^a School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580,

China

^b CNOOC Research Institute, Beijing 100027, China

^c State Key Lab of Offshore Oil Exploitation, Beijing 100027, China

Fig. S1. Apparent viscosity plotted as a function of (c) nanoparticle type (25°C, NaCl 9000 mg/L,

CaCl₂ 1200 mg/L)

Fig. S2. Apparent viscosity plotted as a function of NaCl concentration at 25°C.

Fig. S3. Apparent viscosity plotted as a function of $CaCl_2$ concentration at 25°C.

Fig. S4. Apparent viscosity plotted as a function of temperature in salt solution (NaCl 3000 mg/L,

CaCl₂ 400 mg/L).