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In this Supplemental Material, we provide information about the soft and high-frequency auxiliary modes in section
I, effective Hamiltonian method in section II, discuss on the polarization trajectory in the partial- and full-excitation
simulations in section III, numerically examine the essential role of the Q mode on the squeezing effect in section IV,
and at last we report the strategy of polarization full-reversal under four different magnitude of laser pulse in section
V.

I. FERROELECTRIC SOFT AND HIGH-FREQUENCY AUXILIARY MODES

FIG. 1. (a) phonon spectra of cubic KNbO3 from DFT calculations. The circled branches from top to bottom are Q and P
modes; The plus sign is to indicate the modes are at Γ point. Atomic patterns corresponding to the (b) ferroelectric soft mode
P and (c) high-frequency auxiliary mode Q; The color codes in (b) and (c) are as follows: red for Oxygen, green for Niobium,
and purple for Potassium.

In KNbO3 and other polarizable perovskites, the zone-center P mode is soft (in the sense that the square of its
frequency is negative in the cubic phase at 0K) while the Q mode possesses a high and positive frequency in the cubic
state at 0K. Both the distortion modes of P and Q are depicted within the perovskite 5-atom cell in figs. 1(b) and (c),
respectively. Their frequencies, as calculated for KNbO3 from Density Functional Theory (DFT) at 0K in the cubic
phase, are marked in fig. 1(a) at the Γ point. Their eigenvalue and eigenvector are indicated in Table I. Their own

TABLE I. DFT calculated P and Q mode frequencies and eigenvectors in cubic KNbO3. Note that the displacements for all
the atoms are along the same direction, either x-, y- or z-direction.

ω (THz) K (Å) Nb (Å) O1 (Å) O2 (Å) O3 (Å)
Q mode 15 0.010 -0.056 -0.773 0.447 0.447
P mode -5 0.053 -0.654 0.506 0.396 0.396
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dielectric responses at finite temperatures (and thus in different phases) are shown in fig. 2, as computed from the
effective Hamiltonian simulations following the formalism in [1, 2]. Focusing on the dielectric response associated with
Q, its peaks correspond to the resonance of the high-frequency auxiliary modes. One can see that, as consistent with
experiments [3, 4], such resonance for A and E modes are about 18 and 16 THz respectively in the R-phase at 240K
(figs. 2(a)), for A, B1 and B2 modes are 18, 16, and 15.5 THz respectively in the O-phase at 300K (figs. 2(b)), for A
and E modes are 19 and 15.5 THz respectively in the T-phase at 400K (figs. 2(c)), and T mode (which is also the F
mode [3, 4]) is 16 THz in the C-phase at 800 K (figs. 2(d)). One can also see that the calculated peaks for resonant
frequencies are in good agreement with the experimental data of Refs. [3, 4] (marked by vertical lines in figs. 2) of
rhombohedral and orthorhombic phases; The deviation of numerical results from the experiment in tetragonal and
cubic phases are within 1 THz. Note that in the numerical experiments on squeezing effect, we choose the frequency
to excite the A-mode of Q (QA) in order to trigger the squeezing. Because A mode defines the oscillation along
the polarization direction and E and B modes are perpendicular to the polarization. As we are going to discuss in
Section III of this Supplemental Material, the existence of A and E modes in the R-phase can affect the polarization
switching when laser pulses of 18 THz are applied in the R-phase, as documented in Fig. 2(d) of the main manuscript.

Moreover, considering that the linear response to the electric field excitation, E ·Q, is proportional to E·Q
ω2−ω2

i
, where

ωi are the eigenfrequencies of the system, we used in the manuscript laser pulses 18 THz for R- and O-phase and 19
THz for T-phase, that is with a frequency that is close enough to to the resonance of the high-frequency auxiliary
mode and far enough to the low-frequency resonance of the soft-mode (which can be found in fig. 2 by looking at
the peaks of the dielectric response associated with P, and which is thus around 8-9 THz for all three ferroelectric
phases).

FIG. 2. Imaginary part of dielectric constant for both the P and Q modes in the (a) R-phase at 240 K; (b) O-phase at 300 K;
(c) T-phase at 400 K; and (d) C-phase at 800K. The peaks for A modes correspond to oscillations parallel to the polarization
while for E and B modes they correspond to oscillation being perpendicular to the polarization. The T mode in cubic is triply
degenerated as there is no inversion symmetry breaking. The measured frequencies are marked by the vertical black lines in
order to be compared with our numerical results.

II. EFFECTIVE HAMILTONIAN

Here, we describe in detail the newly developed effective Hamiltonian (Heff ) of ferroelectric polarization (P) and
high-frequency auxiliary mode (Q) coupled system, and its coefficients for KNbO3. It has the following degrees
of freedom: vectors related to the ferroelectric soft mode P, high-frequency auxiliary mode Q and inhomogeneous
strain (u) in each 5-atom unit cell, as well as, the homogenous strain (η). Both P and Q modes are infrared-active
modes. Their associated local vectors in the Heff are centered on Nb ions. The local vectors corresponding to the
inhomogeneous strains are technically centered on K ions. The homogenous strain is defined with respect to cubic
symmetry and has six independent components ηi, in Voigt notation.



3

TABLE II. Expansion parameters of the effective Hamiltonian for KNbO3. Atomic units are used here. The reference cubic
lattice parameter is 7.464 Bohr

Dipole Zp 11.1697 Zq -3.9183 ϵ∞ 6.649
Mp 45 Mq 16 Mu 180

Eonsite(P ) κp 0.0729011 αp 0.38937 γp -0.68078
jp1 -0.0130602 jp2 0.0061562

Enn(P ) jp3 0.0037809 jp4 -0.0024885 jp5 0.01050
jp6 0.00125679 jp7 0.00062839

Eint(P, η) Cp
1111 -2.609 Cp

1122 0.38441 Cp
1212 -0.019093

Eelastic B11 6.089 B12 1.124 B44 1.329
Eonsite(Q) κq 0.079852 αq 0.031271 γq -0.024934

jq1 -0.0016375 jq2 0.0046928
Enn(Q) jq3 0.0010588 jq4 -0.0008193 jq5 0.00

jq6 0.00037143 jq7 0.00018572
Eint(Q, η) Cp

1111 -1.4584 Cp
1122 -0.22048 Cp

1212 0.122845
Λ22 0.47182

U int(P,Q) Λ1 -0.04958 Λ2 -0.4849 Λ3 -0.397024
Λ211 -0.06446 Λ112 0.10272 Λ1111 0.19742

The potential energy in Heff = Ktot + U tot is the sum of four main energies:

U tot = UFE({P}, {u}, {η}) + Uaux({Q}, {u}, {η}) + U int({P}, {Q}) + Uelastic({η}) (1)

where UFE is the energy associated to the ferroelectric soft mode and its interaction to homogeneous and inhomoge-
neous strains; Uaux is the energy associated to the high-frequency auxiliary mode and its interaction to homogeneous
and inhomogeneous strains; U int includes the essential direct interactions between P and Q modes; and Uelastic is
the elastic energy.

UFE contains the following five terms, as proposed in Ref.5

UFE = Eonsite({P}) + Edpl({P})
+ Enn({P}) + Eint({P}, {u}, {η})

(2)

where Eonsite is the P mode on-site interaction within a unit cell, Edpl is the long range dipole-dipole interaction,
Enn represents the short range interactions between neighboring P modes excluding dipole-dipole interactions, and
Eint is the interaction between elastic deformation and P modes. Their specific expressions read as follows:

Eonsite =

N∑
i

{κpP
2
i + αpP

4
i + γp(P

2
ixP

2
iy + P 2

iyP
2
iz + P 2

izP
2
ix)} (3)

Edpl =
1

2

Z2
p

ϵ∞

N∑
i̸=j

Pi ·Pj − 3(dij ·Pi)(dij ·Pj)

d3ij
(4)

Enn =
1

2

N∑
i ̸=j

Jp
ijαβPiαPjβ (5)

Eint =

N∑
i

x,y,z∑
αβµν

Cp
αβµνεαβPiµPiν (6)

where the sums on i and j run over N unit cells, α, β, µ, and ν are Cartesian components along the x, y, and z axes,
and dij represents the vector that points from site i to site j. Note that strains εαβ contain both homogeneous strains
{η} and inhomogeneous-strain related variables {u}. The site-site interaction tensor Jijαβ in Enn can be simplified
for different nearest neighbor (NN) shells as:

JNN1stαβ = (j1 + (j2 − j1)dij,α)δαβ (7)

JNN2ndαβ = (j4 +
√
2(j3 − j4)dij,α)δαβ + 2j5dij,α · dij,β(1− δαβ) (8)

JNN3rdαβ = j6δαβ + 3j7dij,α · dij,β(1− δαβ) (9)
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The potential energy Uaux follows the same formalism as UFE only with different parameters, to be denoted as κq,
αq, γq, Zq, J

q, and Cq.

Moreover, the interaction between P and Q is written as:

U int =

N∑
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(10)

where n is the power order that goes from 1 to 3, i is the unit cell index that goes through all N sites. The elastic
energy has the forms of

Uelastic =
N

2

x,y,z∑
αβµν

Bαβµνεαβεµν (11)

where the strain tensor ε includes both homogeneous ({η}) and inhomogeneous ({u}) strains. The parameters for
the potential energy are first fitted from density functional theory (DFT) total energy and Hessian calculations, but
then some of them are modified as indicated in the main manuscript. They are listed in Table II in atomic units.

Moreover, the kinetic energy Ktot of the Heff contains three parts written with respect to the velocity vp, vq, and
vu that correspond to the order parameters, P, Q, and u:

Ktot =

N∑
i

1

2
Mpv

2
p,i +

1

2
Mqv

2
q,i +

1

2
Muv

2
u,i (12)

where the effective masses are defined as Mp, Mq, and Mu respectively. Their values are fitted to produce the same
mode frequency as from the DFT phonon calculations at 0 K, and are listed in Table II too. Using these parameters,
we employed Monte Carlo (MC) and Molecular Dynamic (MD) algorithms on a 12×12×12 supercell that contains 8640
atoms. More specifically, we used parallel tempering6,7 (PT) MC and Nosé-Hoover thermal state8–10 MD simulations
implemented in LINVARIANT11. Periodic boundary conditions were adapted. For each temperature, 150,000 PTMC
sweeps are firstly performed, with the first 100,000 steps as thermalization and the subsequent 50,000 steps to compute
the phase diagram; then MD simulations are initialized with the MC outputs and 500,000 thermalization steps are
performed before the statistical evaluations; the time interval of 0.1fs is used in the MD simulations.

III. PARTIAL- AND FULL-EXCITATION

In this section and in order to complement results of “Electrical polarization reversal” section of the main
manuscript, the trajectories of each components of P and Q modes at 240K under laser pulse are summarized.
We used a Gaussian-enveloped sinusoidal electric field to mimic the laser pulse in the experiment12. The halfwidth is
set to be 200fs and the frequency is chosen at 18 THz which is close enough to the Q mode frequency in the R-phase.
Different magnitude of electric fields that are parallel to the initial electrical polarization direction (that is [111̄]) are
used and marked in figs. 3 and 4.
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FIG. 3. partial-excitation associated with Fig 1(c) of the main text; the pink regions are used to indicate the full-width-half-
maximum of the pulse.

In the case of partial-excitation: We can see that Qx, Qy, and Qz are oscillating with large amplitudes, and,
consequently (because of squeezing effects), all Px, Py, and Pz decrease in magnitude wiggly during this period (when
the pulse has large electric field) in the four cases of fig. 3. The difference among them is the dip that the polarization
can reach with the kinetic energy gained from different magnitude of electric fields when the pulse starts to get
reduced. More specifically, the Px, Py, and Pz in fig.3 (a) with E=5.34 MV/cm are such as the total polarization
goes towards the [1̄1̄1] direction first and then bounces back to [111̄], during which period none of Px, Py, and Pz

touches a zero value. This is because the kinetic energy that P modes gain during the laser pulse is not large enough
to overshoot to the opposite direction. In the case of a larger electric field, E=8.91 MV/cm, in fig.3 (b), Px, Py, and
Pz touch zero for a short moment, but none of them crosses over the zero point. So no polarization reversal happens
either in this case. On the other hand, when the electric field increases to E=12.47 MV/cm, Px, Py, and Pz gain
enough kinetic energy during the pulse and continue to go over the zero point when the pulse is almost out and when
thus the squeezing effect is quite weak. Thus the reversal happens but not the full one, because, at that moment in
the dip, the force from the un-excited part of the material that wants to align the polarization along [111̄] direction
starts to overcome the squeezing effect (that wants the polarization to be zero). On the microscopic level, in the dip,
some cells exposed to the laser present polarization along the [1̄1̄1] direction and other cells start to deviating toward
the [111̄] direction. For an even larger field, such as E=22.27 MV/cm, not only Px, Py, and Pz gain enough kinetic
energy to drop to zero, but also the squeezing effect is still large at that moment. This is because the electric field
is so large that within a fixed pulse width (as τ is equal to 200 fs for all these cases) there is a longer duration for
which the electric field is large enough to excite large Q mode and thus to provide longer duration of squeezing. This
is why Px, Py, and Pz oscillate several times near zero before recovering their initial value.



6

FIG. 4. full-excitation associated with Fig 1(d) of the main text; the pink regions are used to indicate the full-width-half-
maximum of the pulse.

In the case of full-excitation: We can also see that Px, Py, and Pz decrease wiggly as a reaction to any considered
pulse, as in the partial-excitation cases and as consistent with squeezing effects. In fig. 4(a) and for the small field of
5.34 MV/cm, the behavior of Px, Py, and Pz is exactly like in the case of partial-excitation with E=5.34 MV/cm as
depicted in fig. 3(a): after experiencing a short moment of decreasing but with no change in their sign, they recover
their initial value after the pulse exits the system. For a larger electric field of E=8.90 MV/cm, in fig. 4(b), Px, Py

and Pz touch zero. When the pulse is out, only Py and Pz start to recover toward their initial value, but Px stays
near zero. The microscopic origin of this vanishing of Pc is found to be the coexistence of two R-domains, one for
which the polarization is along the initial [111̄] direction and another one for which the polarization has rotated to be
along [1̄11̄] via a change of sign of Px. Interestingly, the coexistence of domains when under such type of laser pulses
was also experimentally observed in SrTiO3

13. Moreover, rotation to other R-phases also happen in fig.4 (d) for a
field of 14.24 MV/cm, including domains along [1̄11̄], [1̄1̄1̄], [1̄11], and [1̄1̄1] directions. In the case of fig. 4(c) with
E=12.46 MV/cm, the three polarization components change their signs and thus the polarization is fully reversed to
[1̄1̄1]. Note that, in these two cases of 12.46 and 14.24 MV/cm, when Px, Py, and Pz touch zero, the pulse is around
its maximum. So oscillation of polarization’s components near zero due to squeezing can be observed. After these
oscillations around zero, equal volume of positive and negative domains (e.g. polarization component adopts either
positive or negative values) happen along the y and z-axes for the largest field of 14.24 MV/cm (see fig. 4(d)), which
explains why Py and Pz are all zero. The whole fig. 4 therefore shows that not only reversal of the polarization, but
also rotation to other R-phases as well as formation of R-domains, are also possible when activating the Q mode
by a pulse. One needs two conditions to be fulfilled in order to end up with a full reversal of the polarization: the
first one is that the pulse should end at the exact moment when all polarization components touches zero, while the
second one is that the polarization should have gained enough kinetic energy to go over the zero point when the
pulse is out. Without the first condition, the polarization will be squeezed to zero with orientation and magnitude
fluctuations and the system can then adopt other R-phases with rotating polarization when the electric field is totally
out. Furthermore, if the second condition can not be matched, Px, Py and Pz will not have enough kinetic energy to
go over the zero point (where the highest energy locates), and the polarization can then recover its initial value.
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Another interesting way to understand the different results of fig. 4 is that the application of 18 THz pulses can
activate the A-mode of Q but also its E-mode, since both of these two modes are close to each other in frequency
in the R-phase (see Section I of this Supplemental Material). The activation of this E-mode can then facilitate the
rotation of the polarization (as consistent with the results of fig. 4 for fields of 8.90 and 14.24 MV/cm) while activating
the A-mode of Q can induce a reversal of the polarization (as consistent with the results of fig. 4 for the field of 12.46
MV/cm).

IV. ROLE OF P AND Q ON THE SQUEEZING EFFECT

Let us concentrate on a T-phase with an initial P along [001] and apply a laser pulse E=7.71 MV/cm parallel to
[001] direction as in fig. 2 of the main text. Here, we keep all the parameters and initial conditions identical to the
one in Fig. 2 of the main text except that the Q mode is not allowed to be oscillating (its velocity is fixed to zero)
and thus frozen in its (negative) equilibrium value in such initial T-phase. The response of P mode in such conditions
can be seen in fig. 5(c): Pz “only” oscillates around its equilibrium value rather than decrease to zero (as in Fig. 2
of the main text). Such numerical experiment demonstrate that the response of Q to a pulse is needed in order to
induce a squeezing effect on P.

FIG. 5. Numerical experiment in which the set up is the same as in Fig. 2 of the main text, except that Q mode is frozen in
its equilibrium value

Note that other numerical experiments also revealed that, in addition to the U
(z)
22 and U

(x−z)
22 as discussed in the

main text, the roles of U31 and U13 as defined in eq. 13 and 14 are also important in the squeezing effect both
quantitatively and qualitatively.

U31 =Λ3(P
3
xQx + P 3

yQy + P 3
zQz) (13)

U13 =Λ1(PxQ
3
x + PyQ

3
y + PzQ

3
z) (14)

As a matter of fact, the significant coefficients Λ1 and Λ3 in the front of U13 and U31 result in couplings that pump
energy efficiently from the resonated Q modes into P modes, and thus make the squeezing effect happens within
sub-picoseconds. More precisely, the larger the coefficients in front of U13 and/or U31 the smaller Q amplitude (and
thus smaller pulse) is needed to give rise to efficient squeezing effect, which also means a lower demand on the laser
power. Moreover, the coefficients in front of U31 and U13 play another important role in KNbO3: not only do they
drive the condensation of Qz when Pz exists (Qz would be zero if such couplings did not exist) but their positive signs
also force Qz and Pz to be of opposite signs – as evidenced in figs. 1(a,b) and figs. 2(b,c) of the main text.

V. STRATEGY OF FERROELECTRIC POLARIZATION FULL-REVERSAL

In fig. 6, we numerically check the strategy proposed in the Section “Ultrafast full-reversal strategy” of the main
text and summarized in fig. 3(a) of the main text, using different magnitude of laser pulses, namely 5.14, 6.68, 7.71,
and 9.26 MV/cm, to realize deterministic polarization full reversal. A dc gate field is constantly applied along the
[1̄10] direction, with its amplitude equal to 0.0154 MV/cm. The sequence of laser pulse includes a x-polarized pulse
at 10 ps, a y-polarized pulse at 20 ps, and a z-polarized pulse at 30 ps, as detailed in the main text. The initial state
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is an O-phase with a polarization along the [11̄0] direction. The process in figs. 6 (a) and (d) goes through the same
transition path as the one described in the main text, that is 1 3 5 . Furthermore panels (b) and (c) show the other
predicted path, namely 2 4 5 . Both transition paths do end up with a full reversed polarization of the polarization
from the initial [11̄0] direction to the final [1̄10] direction.

FIG. 6. Strategy for realizing the full-reversal of the ferroelectric polarization with different magnitude of laser pulse, e.g. 5.14,
6.68, 7.71, and 9.26 MV/cm. The gate field is along [1̄10] with a magnitude of E=0.0154 MV/cm. The circled digits are the
same markers indicated in fig. 3 (a) of the main text.
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