
Virus Particle Propagation and Infectivity along the Respiratory Tract and a Case Study
for SARS-CoV-2(Supplementary Material)

Impedance (Z) airflow rate (Q) and airflow velocity (u)
Based on the conservation of fluid flow, the following conditions hold at a bifurcation junction as represented in Fig. 1.

Q(L0,out) = Q(L11,in)+Q(Lr1,in) and P(L0,out) = P(L11,in) = P(Lr1,in), (1)

where Q- flow rate, P- pressure, Ll1 and Lr1 are respectively the length of the left (l) and right (r) branches of the parent
airway of length L0 (or in generation 1, G1). The subscript in and out stands for the inlet and outlet of the airway, respectively.

Based on the circuit theory (i.e., Ohm’s law; V = IR, where V -voltage, R-resistance and I-current), the impedance (Z),
resistance against the airflow, is then computed as Z = P/Q1. Thus, the following relationship can be derived to compute the
impedance at the junction (i.e., outlet of the pipe) as

1
Z(L0,out)

=
1

Z(Ll1,in)
+

1
Z(Lr1,in)

. (2)

Thereby, the impedance at the inlet of the parent airway is computed as

Z(L0,in) = ZL0 +Z(L0,out), (3)

where ZL0 is the impedance of the parent airway (i.e., G0) and computed based on the following procedure.
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Figure 1. Bifurcation of the first airway generation (G0), i.e., trachea into bronchus(this image was created by using Microsoft
PowerPoint version 16.57 and can be accessed here).

Following the definition of impedance Z, i.e., Z = P/Q, and the concepts in fluid dynamics, the impedance of the parent
airway ZL0 is expressed as

ZL0 =
8µL0

πr4
L0

, (4)
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where µ- airflow viscosity and rL0 is the airway diameter. By plugging Eqn. 4 in Eqn. 3, the impedance at the inlet of the parent
airway can be calculated as

Z(L0,in) =
8µL0

πr4
L0

+Z(L0,out). (5)

Now, at the bifurcation junction, the inlet flow rates into the left and right branches of the parent airway as well as its outlet
pressure are then computed as

Q(Ll1,in) = Q(L0,out)
Z(Lr1,in)

Z(Ll1,in)+Z(Lr1,in)
, (6)

Q(Lr1,in) = Q(L0,out)
Z(Ll1,in)

Z(Ll1,in)+Z(Lr1,in)
, (7)

P(L0,out) = Q(L0,out)Z(L0,out) (8)
Q(Ll1,in) = Q(Ll1,out) and Q(Lr1,in) = Q(Lr1,out) (9)

As Fig. 1 represents the bifurcation (branching) of the respiratory tract as airway generations, a backward process is
followed to compute the airflow rates, and then the velocity profiles over the respiratory tract.

Having computed the impedance of each airway generation, the airflow rate Q is then computed by using Eqns. 6-9. Finally,
the Q = uA relationship is used to compute the airflow velocity profile of each airway generation.

Virus Concentration Model Derivation (CGi(x, t))
To derive a model for characterizing the virus propagation along a respiratory airway generation (Gi), consider a control volume
V of depth δx with a cross sectional area A as illustrated in Fig. 1b in the main document (i.e., V = Aδx). As Fig. 1b illustrates,
when virus particles enter to an airway (shown as gray circles), they deposit on the airways walls and subsequently the virus
infection takes place. As a consequence of the virus infection, more virus particles are reproduced (blue circles). The number of

virus particles in the control volume (i.e., virus concentration, CGi(x, t)) can be expressed as V
dCGi (x,t)

dt . Then, the accumulation
of the virus in the control volume V can be formulated by considering the mass balance, i.e., virus particle in-flux ( fin) and
interior flux-loss to the airway surface ( floss) and out-flux ( fout ) of virus particles as follows:

V
dCGi(x, t)

dt
= fin + freproduced − ( fout + floss),

V
dCGi(x, t)

dt
= QinA+ pVCGi − (QoutA+ kVCGi),

dCGi(x, t)
dt

= −Q(x+δx, t)−Q(x, t)
δx

− (k− p)CGi(x, t),

dCGi(x, t)
dt

= −dQ(x, t)
dx

+(p− k)CGi(x, t), (10)

where k(s−1) and p(s−1) are respectively the virus deposition rate on the airway surface and virus reproduction rate and Q is the
airflow rate through the control volume Qin = Q(x, t) and Qout = Q(x+δ t). Since the virus particles flow under the advection
and diffusion mechanisms, the airflow rate Q can be formulated as the total airflow due to advection and diffusion, and hence,

Q(x, t) = uiCGi(x, t)−D∇CGi(x, t), (11)

where ui is the air flow velocity at the Gth
i airway generation and D is the diffusion coefficient. Hence, the rate of change of air

flow rate along the x-axis (in practice, x−axis implies the direction to which air flows), dQ(x,t)
dx , can then be written as

dQ(x, t)
dx

=
∂CGiui

∂x
−D

∂C2
Gi

∂x2 . (12)

When the airflow achieves its settling velocity (i.e., when the airflow flow reaches its steady state), ∇ui =
∂ui
∂x = 0 and D is a

constant. So, Eqn. 12 can be simplified into the following expression:
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Figure 2. Virus particle propagation through a control volume of an airway generation with deposition rate k and reproduction
rate p(this image was created by using Microsoft PowerPoint version 16.57 and can be accessed here).

dQ(x, t)
dx

= ui
∂CGi

∂x
−D

∂C2
Gi

∂x2 . (13)

Based on the mass balance of the fluid flow without any reproduction and absorption of virus in Eqn. 10, the following
relationship in Eqn. 14 holds regardless if the flow is due to advection or diffusion, and is represented as2.

dCGi(x, t)
dt

=−Q(x, t)
dx

. (14)

By plugging Eqns. 13 and 14 in Eqn. 10), the change in virus concentration along an airway can be represented in Eqn. 15.
This is normally called the governing equation that represents the dynamics in virus concentration along the respiratory tract,
and is represented as

∂CGi(x, t)
∂ t

+ui
∂CGi(x, t)

∂x
−D

∂CGi(x, t)
2

∂x2 +(p− k)CGi(x, t) = 0, (15)

for i = 0,1, · · · ,23. Suppose the initial inlet virus concentration is CG0 , i.e., CG0(0,0) =CG0 , then the solution for Eqn. 15 can
be derived by applying the following transformation:

CGi(x, t) = g(x, t)e(αx−β t) with α = ui/2D and β = K +u2
i /4D, (16)

where K = k− p. Then the partial derivatives of Eqn. 16 with respect to time t and x are

∂CGi

∂ t
= e(αx−β t) ∂g

∂ t
−βg(x,y)e(αx−β t), (17)

∂CGi

∂x
= αg(x, t)e(αx−β t)+ e(αx−β t) ∂g

∂x
, (18)

∂ 2CGi

∂x2 = α
2g(x, t)e(αx−β t)+2αe(αx−β t) ∂g

∂x
+ e(αx−β t) ∂ 2g

∂x2 . (19)
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By plugging these derivatives in Eqn. 15, it can be converted in the form of the standard steady state diffusion equation in
terms of g(x, t) as given in Eqn. 20:

∂g
∂ t

= D
∂ 2g
∂x2 . (20)

The general analytical solution of Eqn. 20, the virus concentration, CGi(x, t), at a point x and time t can be written as

g(x, t) =
CGi−1

2
√

4πDt
e
[
− x2

4Dt

]
, (21)

where CGi−1 = 2CG0 only at t = 0. This is because the CGi−1 divides equally into two when virus enters into the two branching
airways of the Gi generation.

The solution of Eqn. 15 can then be expressed as

CGi(x, t) =
CGi−1

2
√

4πDt
e
(
−x2
4Dt

)
e(αx−β t). (22)

By substituting the values of α and β given in Eqn. 16 in Eqn. 22 and then re-arranging the terms in the exponential
function, the final solution of Eqn. 15 can be expressed as follows

CGi(x, t) =
CGi−1√
4πDt

e

(
− 1

4
(x−uit)

2
Dt −(k−p)t

)
. (23)

This expression presents the change in the virus concentration along an airway over time along with the effects of virus
reproduction and deposition.

At the steady state,
∂CGi

∂ t = 0 and u is also a constant. Then, the Eqn. 15 can be simplified as

ui
∂CGi

∂x
−D

∂ 2CGi

∂x2 = −(k− p)CGi ,

∂

∂x
(uiCGi −D

∂CGi

∂x
) = −(k− p)CGi . (24)

Note that according to Eqn. 11, uCGi −D
∂CGi

∂x = Q(x, t). The analytical solution of Eqn. 24 can be derived by transforming it
into the following quadratic equation:

Dφ
2 −uiφ − (k− p) = 0, (25)

where φ =
∂CGi (x,t)

∂x . The solution of Eqn. 25 can be written as φ =
ui±

√
u2

i +4D(k−p)
2D . Since the concentration cannot be

negative or an imaginary number, the condition u2
i +4D(k− p)> 0 should hold, that is ui > 2

√
D(p− k). Hence, the final

solution of Eqn. 25 is

CGi(x) = Ae(φx) (26)

where A is an integration coefficient that has to be determined. To compute the value of A in the steady state considering Eqn.
24, this can be represented as

d
dx

(uiCGi −D
dCGi

dx
) =−(k− p)CGi . (27)

It is given in Eqn. 12 that Q = uC−D
dCGi

dx . At x = 0, from 26, CGi(x = 0)A and
dCGi (x)

dx |x=0 = Aφ and Q(x = 0) = uiCGi(x =

0) = u
CGi−1

2 . Hence, according to 27,
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u
CGi−1

2
= uiC(x = 0)−D

dCGi(x)
dx

|x=0 = Aφ , (28)

(ui −φD)A = ui
CGi−1

2
,

A =
uiCGi−1

2(ui −φD)
.

Now, A can have two values A1 and A2 as follows

A1 =
CGi−1ui

ui −
√

u2
i +4D(k− p)

→ when φ =
ui +

√
u2 +4D(k− p)

2D
, (29)

A2 =
CGi−1ui

ui +
√

u2
i +4D(k− p)

→ when φ =
ui −

√
u2

i +4D(k− p)

2D
. (30)

Considering Eqn. 29, A1 ≥ 1 as u > u−
√

u2 +4D(k− p), and this turns out that according to Eqn. 26, CGi(x) is increasing

with x. On the other hand, according to Eqn. 30, A2 ≤ 1 as ui < ui+
√

u2
i +4D(k− p), hence C(x) decreases with x. In practice,

the virus concentration should decrease when the virus travels along the airway tract. Thus, A2 is the most suitable value for A.
Finally, by substituting the A and φ values derived from Eqn. 28 and Eqn. 25 in eqn. 26, the steady state virus concentration

along the airway tract, CGi(x), can be written as

CGi(x) =
CGi−1ui

ui +
√

u2
i +4D(k− p)

exp

ui −
√

u2
i +4D(k− p)

2D

x

 , (31)

for u > 2
√

D(p− k) and i = 0,1, · · · ,23.

Settling Velocity (ug)
The maximum velocity that a virus particle can achieve is known as its settling velocity; velocity of a particle when the total
external forces acting on it becomes zero. Fig. 3, for instance, depicts a virus particle of mass m, diameter dp and density ρp
that enters to an an airflow of density ρ f at t = 0 with velocity u0 and then propagates along an airway with velocity u f under
three external forces given in Eqns. 32- 33. We assume the virus particle achieves its settling velocity ug at t = T after traveling
LT distance. When the virus particle moves through a projected area Ap at an arbitrary time t, its relative velocity (velocity with
respect to the airflow) can be expressed as up,t = u f −up, and it also gains an acceleration due to the imbalance of the external
forces that act on it, and this includes

Fe = mg (gravitational force), (32)

FD =
CDu2

p,tρ f Ap

2Cc
(drag force),

Fb = mass of fluid displaced× acceleration form the external force,

= [
m
ρp

ρ f ]×g (Buoyant force), (33)

where CD is the drag coefficient and Cc is the slipping coefficient. The Newton’s second law (i.e., F =
d(mup)

dt ) can then be used
to express relationship of these three forces as

Fe −FD −Fb =
d(mup)

dt
,

d(up)

dt
=

g(ρp −ρ f )

ρp
−

CDu2
(p,t)ρ f Ap

2Ccm
. (34)
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Figure 3. Virus particle propagation under gravity. The virus particles first achieve settling velocity and then deposition on the
airway walls(this image was created by using Microsoft PowerPoint version 16.57 and can be accessed here).

According to the definition of the Reynolds’s number, Reynolds’s number of the virus particle is Rep =
ρpdpu(p,t)

µ
and hence

the relative velocity can be expressed as u(p,t) =
Repµ

ρpdpu(p,t)
. Moreover, assuming that the spherical shaped virus particles, the

weight m and cross sectional area Ap of the virus particle can be expressed as m =
πd3

pρp
6 and Ap =

πd2
p

4 , respectively. By
plugging these terms in Eqn. 34, then Eqn. 35 expresses the change in particle velocity up as

dup

dt
=

g(ρp −ρ f )

ρp
−

3µCDRepρ f

4Ccd2
pρ2

p
u(p,t), (35)

where g is the acceleration gravity and

Rep = ρ
up,tdp

µ
(Particle Reynolds number),

CD =
24

Rep
(1+0.15Re0.687

p ) (Particle Drag Coefficient),

Cc = 1+
2λ

dp
(1.257+0.4e−1.1 dp

2λ ) (Cunningham slip correction factor).

The virus particle achieves the settling velocity, ug, when dup
dt = 0 (i.e., Eqn. 35 = 0 ), hence the settling velocity can be

expressed as

ug = u(p,t) =
4Ccd2

pρp

3µCDRep

(ρp −ρ f )

ρ f
g. (36)

Respiratory Airway Generations and Their Physiological Parameters
Additional Results
This section presents some aiming to give more in depth understanding about the viral dynamics along the respiratory tract.
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Table 1. Physiological parameters of the respiratory airway generations taken from3.

Generation G0 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11
number G12 G13 G14 G15 G16 G17 G18 G19 G20 G21 G22 G23
Length 12 4.76 1.9 .76 1.27 1.07 .9 .76 .64 .54 .46 .39
(L cm) .33 .27 .23 .2 .165 .14 .12 .099 .083 .07 .059 .05
Diameter 1.8 1.22 .83 .56 .45 .35 .28 .23 .186 .154 .130 .109
(dL mm) .095 .082 .074 .061 .06 .054 .05 .047 .045 .043 .041 .04

Impact of Breathing and Virus size on Virus Deposition
In addition to the impact of the virus particle diameter dp on the flow velocity u and deposition rate k presented in Fig. 3 in
the main document, the inlet airflow rate Q0 can also impact on the particle deposition. Fig. 4a(I − IV ) shows the impact of
changes in the inlet airflow rate Q0 on the airflow velocity while Fig. 4b(I − IV ) depicts the influence of the inlet airflow rate
Q0 on the virus deposition along the respiratory tract. The virus deposition rate increases with increasing inlet airflow rate and a
higher deposition can be observed over the upper airway generations (∼ G0 −G15 ).

(a)

(b)

Figure 4. The impact of airflow rate Q on the airflow velocity V and particle deposition rate k; (a) airflow velocity V and (b)
deposition rate k with respect to variations in the airflow rate Q the range 15-60 lmin−1 ( the diameter of the virus particle dp
changes in 70-130 µm).

Variability in Virus Load Over Airway Generations
Insights about the variability in the virus load over the respiratory tract is important particularly in early diagnosis and making
timely treatments to control the virus spread and development into severe illness. This is critically important in treating patients
with chronic diseases like diabetes. In this regard, Fig.5 depicts the variability in the virus load over the respiratory tract after
35 days given that a person exposed to the virus with an initial dose 105Copies/ml and breathing rate is 30lmin. Since the
ACE2 expressed cell density is high around the mouth as well as the alveolar region, the variability in the virus load is high.
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Figure 5. Average virus load in each of the airway generation over a period of 30 day. ACE2 concentration vary over the the
upper (∼ 1−3 generations ) and lower (∼ G21 −G23 generations) regions as N (5−7, .71) and it is N (5.83,0.71) over the
remaining airway generations, and air flow rate Q0 is 30lmin−1 and virus diameter dp is 70nm.

Impact of Airflow Rate, Clearance of Infected Cells, T-cell Proliferation and Exposure Level on the Temporal
Virus Concentration Dynamics
In order to get broader understanding about the variability in virus dynamics shown in Fig. 7 in the main document, this section
presents change in virus concentration with respect to different parameters. Considering the immune response by T-cells in
the infection model given by Eqns. 7-10 in the main document), Fig. 6 depicts the impact of the initial infectious dose C0,
airflow rate Q0, and T-cell proliferation rate r on the variability in temporal viral dynamics. Fig. 6a(I − III) show that, despite
a change in the initial airflow rate Q0, the virus concentration decreases along the respiratory tract with the increase in the
immune response by T-cells. It can be expected that higher airflow rate can take a greater amount of virus downwards the
respiratory tract. Whereas, considering Fig. 6(I) and (II), a higher virus concentration can be observed in the lower region of
the respiratory tract with low airflow rate. Thus, interestingly, the airflow rate has no major impact on viral dynamics. Moreover,
in Fig. 6b(I − III), it can also be observed that there is a decrease in virus concentration along the respiratory tract with
decreasing the exposure level and increase in the immune response by T-cells. Considering the increase in T-cell proliferation
rate r, it greatly contributes to curb the virus lconcentration more effectively since the persistance of high virus concentration
decreases with higher r value.

Impact of Effective Dose and Immune Response by T-cells
The amount of virus required to initiate an infection is still unclear due to a lack of clinical evidence. The computational model
investigated in this study based on the model in Eqn. 5 suggests that the virus load along an airway increases with higher
exposure levels. Nonetheless, the chance of initiating an infection with a small dose of virus will likely be small as the immune
system can effectively fight against the virus based on Eqns. 7-10. However, in the event of high exposure to the virus, the
immune response may not be strong enough to fight against the virus replication, and this increases the probability of the
infection reaching the lungs. To examine this in greater detail, we simulated the impact of different infectious doses on the
virus concentration across different immune response levels.

In addition to Fig.6 in the main document, to understand the impact of the immune response by T-cells on the viral dynamics
more in depth, Fig. 7 represents the impact of initial exposure dose C0 and T-cell concentration T0 on the virus load over the
respiratory airway generations. Fig. 7a(I − III) exhibit the temporal dynamics in virus concentration over airway generations
using three different infectious doses, representing a low, medium and high concentrations. Having fixed the T-cell proliferation
rate r to 6, the variability in virus load over the airway generations is shown for three different exposure levels in Fig. 7b(I− III)
when T0 increases from 3×103 to 4×107 Copies/µl. The virus load decreases with increasing T0. Hence, a stronger immune
response by T-cells can effectively act against the virus replication. Fig. 7c(I − III) also show the impact of change in T-cell
proliferation rate r when the T0 value increases from 3×103 to 4×107 Copies/µl and C0 is fixed to 107 (Copies/ml). Similar
to what observed from Fig. 7b(I− III), greater T0 level helps in controlling the virus proliferation effectively. Thus, as observed
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(a)

(b)

Figure 6. Variability in virus dynamics integrated with the immune response by T-cells over the respiratory airways with
respect to the change in three parameters; (a) air flow rate Q0 and T-cell proliferation rate r for a fixed exposure level
C0 = 107Copies/ml (b) T-cell proliferation rate r and exposure level C0 for fixed air flow rate Q0 = 30lmin−1 ; where virus
particle diameter dp varies over the range of 70-140 µm.

from these graphs, regardless of the exposure dose, when the T0 > 105 Copies/µl and T-cell proliferation rate r > 10 day−1 ,
the chance of susceptibility to the viral infection is minimal.

This model shows that there is a balance between both the infectious dose and the immune system of the person. If the
initial starting amount of circulating T-cells is constant, the effectiveness of the response is critical and dictates whether the
virus progresses to the lower parts of the lung or not. An effective immune response can potentially deal with a larger infectious
dose, while a weaker immune response may struggle to manage even a small dose. Importantly, this result also suggests that
there is a minimum dose, below which, disease is highly unlikely, and a dose, above which an immune response will struggle to
cope with.
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(a)

(b)

(c)

Figure 7. Total virus load dynamics with initial T-cell concentration T0 and T-cell proliferation rate r;(a) three initial infectious
doses (C0) with T0 = 103 Copies/µl and r = 6 day−1 (b) three exposure levels and T-cell levels with a fixed T-cell proliferation
rate r = 6 day−1 and (c) three T-cell levels and T-cell proliferation rates with a fixed exposure level C0 = 107 Copies/ml; the
time period considered here is for 30 days, the initial airflow rate Q0 = 30 lmin−1, virus particle diameter dp = 70nm.
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