Supporting Information

Biocompatibility and photo-induced antibacterial activity of lignin-stabilized noble metal nanoparticles

Diamela Rocca^{a,b}, Julie P. Vanegas^{†a,c}, Kelsey Fournier^{†a}, M. Cecilia Becerra^b, Juan C. Scaiano^a and Anabel E. Lanterna^{*a}

Table of Content

Synthesis and characterization of MNP@lignin	S2
Calculation of the NP concentration	S7
Stability of MNP@lignin composites in different biological media	S8
Antimicrobial activity	S10
ROS production	S12
Cell viability	S13

Synthesis and characterization of MNP@lignin

In order to select the best conditions for the synthesis of MNP@lignin, different methods were screened for the thermal- and photo-synthesis of nanocomposites utilizing alkali lignin. Table S1 summarized different conditions studied.

Table S1. Synthesis conditions screened for MNP@Alkali composites.

(Metal precursor/lignin) ^a	Irradiation conditions	T (°C)	t (min)
10, 5, 1, 0.1	Dark	55-60	10
10, 5, 2, 1, 0.5, 0.2, 0.1	400	25	20
10, 5, 2, 1, 0.5, 0.2, 0.1	465	28	20
5, 1, 0.5, 0.1	530	28	20
10, 5, 2, 1, 0.5, 0.2, 0.1	730	25	20

^a mg of precursor salt (AgNO₃ or HAuCl₄) per mg of lignin, for a total amount of 0.1 mg lignin per mL.

Figure S 1. UV-Vis absorption spectra of MNP@alkali solutions obtained by irradiation with different wavelengths.

Figure S 2. TEM images of the AuNP@Alkali synthesized following protocols described in table S1: A) thermal reaction, $HAuCl_4/lignin = 1$; B) photochemical reaction, $HAuCl_4/lignin = 0.5(530 \text{ nm irradiation})$. Scale bar: 100 nm.

Figure S 3. TEM images of the AgNP@Alkali synthesized following protocols described in table S1: A) thermal reaction, $AgNO_3/lignin = 10 B$) photochemical reaction, $AgNO_3/lignin = 5$ (465 nm irradiation). Scale bar: 50 nm.

Figure S 4. Particle size distribution for the MNP@lignin nanocomposites determined by measuring 200-400 nanoparticles from different TEM images.

Figure S 5. ATR FT-IR spectra of the lignin alone (black) and the MNP@lignin composites (blue). (A) AgNP@alkali, (B) AgNP@AL, (C) AgNP@ZHL, (D) AuNP@alkali, (E) AuNP@AL and (F) AuNP@ZHL.

Calculation of the NP concentration

The particle concentration was calculated based on the following assumptions: i) the MNP are perfectly spherical and ii) the size distribution is monodisperse. Based on the previously reported methodology¹ we used equation 1 to determine the number of atoms per NP:

$$N = \left(\frac{R_{NP}}{r_A}\right)^3 \tag{1}$$

where R_{NP} is the NP radius (average radius determined by TEM imaging) and r_A is the covalent atomic radius of the metal (0.144 nm for Au and 0.153 nm for Ag). The NP concentration can be estimated by equation 2:

$$C_{NP} = \frac{N_{NP}}{N_A} = \frac{N_{atoms}}{NxN_A} = \frac{moles Au^{3+} (or Ag^+) x N_A}{l} x \frac{1}{NxN_A}$$
(2)

The total amount of Au or Ag was determined by ICP.

Stability of MNP@lignin composites in different biological media

Figure S 6. Time evolution of UV-Vis spectra of different AuNP@lignin dispersed in different biological media.

Figure S 7. Time evolution of UV-Vis spectra of different AgNP@lignin dispersed in different biological media.

Antimicrobial activity

MNP@lignin	^a A (μg/mL)	B (μg/mL)	A (nM)	B (nM)	Lignin loading (wt%) ^b
AuNP@Alkali	223	22	8.0	0.8	53
AuNP@ZHL	337	34	2.6	0.26	16
AuNP@AL	499	50	35.0	3.5	23
AgNP@Alkali	0.2	0.1	0.03°	0.02 ^d	98
AgNP@ZHL	19	9	9.8	4.9	88
AgNP@AL	24	12	2.9°	1.5 ^d	98 ^e

Table S2. Different concentrations used to determine the antimicrobial activity of MNP@lignin composites expressed in µg of metal per mL and in nM of MNP.

^a Determined by ICP-OES measurements. ^b Values obtained assuming spherical volume of the core MNP (diameter calculated from TEM imaging) and shell (hydrodynamic volume calculated from DLS). ^cMIC ^dSubMIC. Based on amount of Ag. Reported MIC for HAuCl₄ is around 0.2 μ g/mL.² Tested MIC for AgNO₃ is 4.1 μ g/mL (based on silver content). ^e Bottom wt% silver content considering particle aggregation can reduce this number.

Figure S 8. Emission spectrum of the white light lamps used for illumination. Total irradiance \sim 78 Wm⁻².

Figure S 9. Bacteria time-kill profiles for *E. coli* and *S. aureus* up to 6 h in the presence of AuNP@alkali and AuNP@AL at A and B concentrations given in table S3.

ROS production

Figure S 10. 2,7-dichlorodihydrofluorescein diacetate (DCFH₂-DA) undergoes deacetylation, in the presence of bacteria esterase (red box). Consecutive oxidation with ROS generate a highly fluorescent molecule (DCF).

Figure S 11. ROS production for samples of *S. aureus* and *E. coli* phototreated with white light in the presence of AuNP@alkali (green), AuNP@AL (purple), AuNP@ZHL (blue), and in the absence of particles (red) at concentrations A and B given in table S3.

Cell viability

Figure S 12. MTT assay based on the reduction of tetrazolium salt to formazan (absorbance at 570 nm) in living cells.

REFERENCES

1. Pacioni, N. L.; Gonzalez-Bejar, M.; Alarcon, E.; McGilvray, K. L.; Scaiano, J. C., Surface Plasmons Control the Dynamics of Excited Triplet States in the Presence of Gold Nanoparticles *J. Am. Chem. Soc.* **2010**, 132, 6298.

2. Shareena Dasari, T. P.; Zhang, Y.; Yu, H., Antibacterial Activity and Cytotoxicity of Gold (I) and (III) Ions and Gold Nanoparticles *Biochem. Pharmacol.* **2015**, 4.