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S1 Notation

Table S1: Symbols and notations used in this paper.

Definition Symbol/Notation Dimension

set of reaction templates T set of size K
encoded set of reaction template Th dt ×K
reactant molecules r
product molecule m
encoded molecule mh dm
reaction template t or tk
training set pair (m, t)
state pattern ξ d
stored pattern xk d
stored pattern matrix X d×K
associations p K
update function of modern Hopfield network (MHN) f
molecule encoder hm

reaction template encoder ht

model function g
network parameters of hm w
network parameters of ht v
parameters of Hopfield layer hm Wm,Wt d× undef
association activation function ϕ
number of templates K
dimension of association space d

S2 Further related work

Here we provide a broader view on works that have addressed common issues with template

relevance prediction. In prior work1–6, template relevance prediction is often viewed as a

multi-class classification task, where, given a product, an machine learning (ML) model is

trained to predict which of the templates extracted from a reaction database are most relevant.

Automatic extraction of templates leads to many rare templates, which poses a problem in the

classification task as it leads to many classes with few training samples3,5. In earlier work5,

rare templates were excluded from training. Baylon et al. 1 proposed a hierarchical grouping
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of reaction templates and trained a separate NN for each group of templates. Fortunato

et al. 3 pre-trained their template scoring model to predict which templates are applicable

and observed that it improves template-relevance predictions, especially for rare templates.2

used a graph-NN to predict the relevant templates. Bjerrum et al. 6 trained two separate

NNs. The first NN is trained on the applicability matrix and serves for pre-filtering reaction

templates. The second is trained on the reaction dataset and ranks the reaction templates

according to their relevance. Dai et al. 7 make use of the template structures. However, they

factorize the predicted probabilities into multiple functions, which might not be suited to

the problem. The in-scope filter of the computer-assisted synthesis planning (CASP) system

by Segler et al. 5 also make use of template structure. Sun et al. 8 apply all templates and

uses a model to rank the resulting reactants, which achieves the best top-1 accuracy but is

computationally costly (Dual-TB in Table 2).

S3 Details on Experiments

S3.1 Template relevance prediction

S3.1.1 Datasets and preprocessing

For preprocessing USPTO-sm and USPTO-lg, we followed the implementation of Fortunato

et al. 3 . The templates were extracted from the mapped reactions using RDChiral9 and

subsequently filtered according to symmetry, validity, and by checking if the application of

the template yielded the result as in the reaction the template originated from. Despite

adhering to the original implementation by the authors, our preprocessing resulted in different

dataset sizes. The roughly 2 million starting reactions decreased to 443,763 samples and

236,053 reaction templates for USPTO-lg (compared to 669,683 samples and 186,822 reaction

templates in Fortunato et al. 3), and to 40,257 samples and 9,162 reaction templates for

USPTO-sm (compared to 32,099 samples and 7,765 reaction templates in Fortunato et al. 3).
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It can be seen that 17% of samples occur in a class that has only one sample in USPTO-sm

and 43% in USPTO-lg. 66% of reaction templates in USPTO-sm and 80% in USPTO-lg

occur only in a single reaction.

To allow for pre-training of the methods, we calculated the applicability matrix, i.e.,

which templates in a dataset are applicable to which molecules. Fortunato et al. 3 reported

that this would take ∼36 CPU-hours for USPTO-sm and ∼330 CPU-days for USPTO-lg on

a single core of a Xeon(R) Gold 6154 CPU@3 GHz. We found that using a substructure

screen could speed up this procedure. The following values were obtained using an AMD

EPYC 7542. For USPTO-sm it only takes us 3.3 CPU-minutes to achieve the same result.

Using 16 CPU-cores this reduces to ∼14s. Using 32 CPU-cores applicability calculation time

for USPTO-lg reduces to ∼50m which corresponds to 27 CPU-hours compared to ∼8000

CPU-hours for the original implementation. These comparisons should be taken with a grain

of salt because of the slightly different dataset sizes and hardware used. For USPTO-lg

443 763 · 236 053 ∼ 1011 pairs have to be checked, and our code relies on a python loop. Using

a compiled language could probably further speed up the procedure.

S3.1.2 Data splits

We split the data into a training, validation, and test set following Fortunato et al. 3 . Here, a

stratified split was used to ensure that templates are more equally represented across the

splits. Concretely, in Fortunato et al. 3 , the split proportions were 80/10/10% except for

templates with fewer than 10 samples, where one random sample was put into the test set,

one into the validation set, and the rest into the training set. If only two samples were present,

one was put into the test and one into the training set. Finally, if only a single sample was

available for a template, it was randomly placed into the train/validation/test set with an

80/10/10% chance.
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S3.1.3 Feature extraction

Molecule fingerprints. The source molecules are represented as simplified molecular-input

line-entry system (SMILES). We extract a fingerprint representation of the molecules. A

molecular fingerprint represents the absence and presence of substructures within a molecule.

The way those subgraphs or substructures are selected is very much different and depends on

the chosen method as well as their parameters. For example, when using morgan fingerprints10,

the algorithm iterates through each atom in the graph, and notes all substructure up to a

certain radius. All substructures are hashed to each map to an integer. All integers are folded

(modulo operation) to a fixed length. The longer the less collisions will appear. The final

vector is a rather efficient indication of how many substructures two molecules share, and

therefore one way to measure their similarity.

We tried out different fingerprint types, e.g. folded Morgan fingerprints with chirality10

and the hyperparameter selection procedure (see Table S2) selected Morgan fingerprint with

radius of 2 folded to 4096 features.

Template fingerprints. For the template representation, a similar procedure has been

applied. A template consists of multiple enumerated SMILES arbitrary target specification

(SMARTS)-strings. The fingerprint type for the templates was set to rdk-fingerprint or

pattern-fingerprint for template relevance prediction and calculated for each molecule that

the pattern represents. We experimented with multiple ways of combining not just the product

side, but also the reactant side to this representation. We found the following to perform best

among the considered variants. The fingerprints were calculated for each molecular pattern,

and a disjunction over reactants as well as products was calculated. The product minus half

of the reactant side results in the template fingerprint as input for the template encoder. We

also tried the structuralFingerprintForReaction function provided by RDKit11, which

concatenates the disjunction of each side of the reaction, but found the weighted combination

to perform better.

Consider a template consisting of reactant substructures sr and product substructure
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sp. Using a fingerprint-function fp produces a fingerprint-vector xr1 . . . xrn and xp. The final

template fingerprint xt is computed using the following form:

xt = fp(sp)− ·0.5pool(fp(sr1), ..., fp(srn))

where pool is a pooling function. A few things need to be considered for the implementation

as can be found in the linked github repository. To compute the fingerprints for each of

the substructures the function getFingerprint from molutils is used and issmarts is

set to True. By default the fingerprint-size, -type, or -radius (if applicable) is defined by

the hyperparameters. Sanitization is an important step and done by default. Here the

SanitizeMol function from RDKit11 is employed setting catchErrors parameter to True.

The next step is using the FastFindRings function to providing ring information if applicable.

Further UpdatePropertyCache(strict=False) to correcting valence information is used.

Max-pooling is used as pooling operation. Another thing to note is that, e.g. number of

explicit hydrogens, direct bonds or charge, may be present in a SMARTS-template, but will

not be represented by the fingerprint in RDKit. Nevertheless, the resulting representation

allows for a learnable measure of similarity between templates, but for some templates the

representation turned out to be equal, and therefore indistinguishable. A simple, yet effective

approach is to add an additional template embedding, which adds more flexibility and has

less inductive bias.

The randomly initialized embedding was added to the representation of frequent templates

in order to help to differentiate frequent templates with a high fingerprint similarity. Templates

are classified as frequent if they appear at least a certain number of times in the training-set,

which is determined by the hyperparameter random template threshold (see Table S2).
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S3.1.4 Training

All models were trained for a maximum of 100 epochs on a Titan V with 12 GB RAM or

a P40 with 24 GB RAM using PyTorch 1.6.012. In the case of deep neural network (DNN),

only the molecule encoder was trained, and a linear layer, projecting from the last hidden

layer to the number of templates was added. For pre-training on the applicability task we

changed the loss function to the mean of binary cross-entropy for each output (template).

We also experimented with Information Noise-Contrastive Estimation (InfoNCE)-loss13 on

representations in Hopfield space (see S7). Because of fast convergence and slightly better

performance, and because for the United States patent and trademark office (USPTO) data

sets only a single template is correct for each molecule, we use our proposed loss, which in

this case is equivalent to CE-loss.

S3.1.5 Hyperparameter selection and model architecture

Hyperparameters were explored via automatic Bayesian optimization for USPTO-sm, as well

as manual hyperparameter-tuning. In the former, early stopping was employed. The range of

values was selected based on prior knowledge. Additional manual hyperparameter-tuning

resulted in better predictive performance on the validation set. Some of the important hyper-

parameters are the beta scaling factor of the Hopfield layer β, the dimension of the association

space d, as well as the association-activation function, or if the association space should

be normalized via layer-norm14. An overview of considered and selected hyperparameters

is given in Tab. S2. All models were trained if applicable for a maximum of 100 epochs

using AdamW15 (betas=(0.9, 0.999), eps=1e−8, weight_decay=1e−2, amsgrad=False).

Hyperparameters were selected based on the minimal CE-loss on the validation set.
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Table S2: Hyperparameter search-space for template relevance prediction. The rows are
subdivided into five modules: overall parameters, the molecule encoder, the template encoder,
the Hopfield layer, and setting specific hyperparameters that were only used if explicitly
stated. The column values show the range of the explored parameters. If multiple Hopfield
layers were used, the same hyperparameters were used for all layers. A random template
threshold of -1 corresponds to not adding noise. The fingerprint size for the molecule
encoder was always the same as the template encoder. The pre-training learning rate was
also defined by the learning rate, the optimizer remained the same, but the loss-function
changed to binary-cross-entropy loss.

MHN selected DNN selected
Hyperparam Values (Sm/Lg) (Sm/Lg)
learning rates {1e-4, 2e-4, 5e-4, 1e-3} 5e-4 / 1e-4 5e-4 / 2e-4
batch-size {32, 128, 256, 1024} 1024 256 / 1024
dropout [0.0, 0.6] 0.2 0.15

molecule encoder
fingerprint type {morgan, rdk} morgan morgan
fingerprint size {1024, 2048, 4096} 4096 4096
number of layers {0, 1, 2} 0 1
layer-dimension {1024, 2048, 4096} - 2048
activation-function {None, SELU, ReLU} None ReLU

template encoder
number of layers {0, 1, 2} 0
template fingerprint type {pattern, rdk} rdk
random template thresh. -1, 2, 5, 10, 50 2

Hopfield layer
beta [0.01, 0.3] 0.03
association af {None, SELU, GeLU, Tanh} None / Tanh
normalize pattern {False, True} False
normalize projection {False, True} True
learnable stored-pattern {False, True} False
hopf-num-layers {1, 2, 3} 1
hopf-num-Wm {1, 2, 3} 1
hopf-num-Wt {1, 2, 3} 1
hopf-FF-activation {None, SELU, ReLU} None
association-dimension d {32, 64, 512, 1024} 1024
hopf-num-heads {1, 6, 12} 1

Setting-specific-hps
pre-training epochs {0,5,10,15,20,25} 10 25 / 5
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S3.2 Single-step retrosynthesis

S3.2.1 Datasets and preprocessing

For single-step retrosynthesis, we used the preprocessed version and splitting-procedure from

Coley et al. 16 . The dataset originated from USPTO-50k by Schneider et al. 17 . It is different

in details from USPTO-sm and does not contain a filtering step, whereby samples are excluded

if extracted and applied templates don’t yield the reactants. A further difference is the split.

For USPTO-50k, we shuffle the samples and further split it according to the procedure by

Coley et al. 16 , randomly splitting within the reaction types, to obtain 40008 train- 5001

validation- and 5007 test-samples (80/10/10). We computed the reaction templates only from

the train- and validation-set.

We additionally report results for USPTO-full which was preprocessed and split randomly

by Tetko et al. 18 . The dataset contains almost 1M samples (train: 761.335, valid: 95.181,

test: 96.027), and extracting templates from the train and validation set lead to 257.340

templates. Note that there are less test samples as reported in Dai et al. 7 due to the different

pre-processing and removal of duplicate reactions.

S3.2.2 Feature extraction

For this experiment, we additionally explored Mixed-Fingerprint (MxFP), which is a mixture

of multiple folded, counted (where applicable) fingerprints: molecular access system (MACCS),

Morgan, ErG, AtomPair, TopolocialTorsion, mini-hash fingerprint (MHFP)19 and RDK. We

additionally scale the counts by log(1 + x)5.

Template-representation. We compute fingerprints for each subgraph-pattern in the reac-

tion template. Again we use a mixture of multiple unfolded RDKit fingerprints. For pooling

the reactant fingerprints, we additionally experimented with different pooling operations.

The main idea is to avoid that different sets are identical after pooling and thus to increase

the expressivity of the pooling operation. Lgamma pooling is a novel pooling operation that
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uses the log of the gamma-function.

lgp(x) = log

(
Γ

(
n∑

i=0

xi + 2

))
−

n∑
i=0

log(Γ(xi + 1)), (1)

where the x contains a single feature of the elements of the set that is pooled. The use of

this pooling function provided a small performance increase over max-pooling.

S3.2.3 Hyperparameters and model architecture

Hyperparameters were tuned manually and selected based on top-1 accuracy on the validation

set. The explored parameters, as well as the selected hyperparameters, can be found in Table

S3. Models were also trained if applicable for a maximum of 100 epochs using AdamW15

(betas=(0.9,0.999), eps=1e-8, weight_decay=1e-2, amsgrad=False). As input, MxFP was

selected with a fingerprint size of 30k. It consists of two layers, where the input for the second

layer is ξnew+ξ, a skip connection from the first layers input plus the output of the first layer.

The first layers’ memory is comprised of MxFP-template fingerprints with lgamma-pooled

reactants (see Section S3.2.2). The second layer uses a different template representation:

RDK-template fingerprint with additional random noise for all templates which appear more

than once in the training set. The final prediction is computed by a weighted average of the

individual layers’ p.

The NeuralSym baseline was trained as follows: As a model architecture, we used a

feed-forward neural network with a single hidden layer of size 4096 and self-normalizing linear

unit (SELU) activation function.20 The inputs to this network were extended connectivity

fingerprint (ECFP)-fingerprints21 with radius 2 and size 4096. The model was trained using

AdamW15 with learning rate 1e-3 and weight-decay of 1e-3. The model was trained for 7

epochs with a batch size of 512.
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Table S3: Hyperparameter search-space for single-step retrosynthesis. The layout and specifics
are equivalent to Table S2 but differ in the explored values and architectural choices. The
hyperparameters for the Hopfield layer remain the same among layers, with individually
initialized weight parameters. The input for layer 1 is given by "template encoder 1" and
vice versa for layer 2. The column MHN (50k/full) corresponds to the results of MHNreact
and DNN (50k) to the first mention of Neuralsym in Table 2.

Hyperparam Values MHN (50k/full) DNN (50k)
learning rates {1e-4, 2e-4, 5e-4, 1e-3} 5e-4 / 1e-4 1e-4
batch-size {32, 128, 256, 1024} 1024 256
dropout [0.0, 0.6] 0.4/0.2 0.15

molecule encoder
fingerprint type {morgan, rdk, MxFP} MxFP morgan
fingerprint size {4096, ..., 40e3} 3e4/2.4e4 4096
fingerprint radius {2, ..., 6} - 2
number of layers {0, 1, 2} 0 1
layer-dimension {1024, 2048, 4096} - 4096
activation-function (af) {None, SELU, ReLU} None SELU

template encoder 1
number of layers {0, 1, 2} 0
template fingerprint type {rdk, rdkc, MxFP} MxFP
random template threshold -1, 2, 5, 10, 50 -1/2
reactant pooling {max, sum, mean, lgamma} lgamma

template encoder 2
number of layers {0, 1, 2} 0 / -
template fingerprint type {rdk, MxFP} rdk/-
random template threshold -1, 2, 5, 10, 50 2/-

Hopfield layer 1 and 2
beta [0.01, 0.3] 0.03
association af {None, Tanh} None
normalize input pattern {False, True} True
normalize association proj. {False, True} True
learnable stored-pattern {False} False
hopf-num-layers {1, 2} 2/1
hopf-num-Wm {1, 2} 1
hopf-num-Wt {1, 2} 1
hopf-FF-af {None, SELU, ReLU} None
association-dimension d {64, ..., 2048} 1024/1500
hopf-num-heads {1, 6, 12} 1
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S3.2.4 Methods omitted from comparison

We omitted some studies from the comparison in Table 2, despite them reporting performance

on USPTO-50k. We found that the experimental settings or reported metrics in these studies

differed from ours. While these reported values are not per se flawed, we think that inclusion

in the comparison may be misleading. We list specifics below:

• Yan et al. 22 reported (https://github.com/uta-smile/RetroXpert) that their model

used information in the atom-mappings about where the reaction center is. This

information relies on the knowledge of the reactants. As the reactants are to be

predicted in this task this is considered test set leakage.

• The reported values in23 are also based on unintentional use of information about the

reaction center, similar to above1.

• The method proposed in24 selects reactants from a candidate set. Since this candidate

set is a superset of the reactants in the USPTO-50k, it might contain information about

the test data. Indeed we found that we could augment the performance of our method

by a process of elimination, i.e., discarding reactant sets from the predictions if they

are not in the candidate set.

• The method proposed in25 also relies on a candidate set that we suspect to contain

information about the test set. However, the description of the method is not very

detailed.

• Guo et al. 26 use reactants from USPTO-stereo as described in27 as a candidate set.

We found that, given this set, we could augment the performance of our method by

removing reactant sets not in this set from our predictions.

• Ishiguro et al. 28 propose a pre-training step on a larger data set which does not conform

to the setting in most prior work and is therefor excluded.
1Personal communication with the authors

13

https://github.com/uta-smile/RetroXpert


• Ishida et al. 2 use a different subset of USPTO-50k to train their model and report

different metrics.

• Ucak et al. 29 also make use of a different subset and also do not report reactant top-k

accuracy.

• Liu et al. 30 only provide results for the special case where the type of reaction is

provided to the model.

S3.2.5 Inference speed

We investigated the speed/performance trade-off for multiple methods. Firstly, we trained a

Transformer baseline using the code and settings provided by27, except for setting the batch

size to 8192, warm-up steps to 6k, and train steps to 50k. We evaluated the predictions of this

model when run with beam sizes {1, 3, 5, 10, 20, 50, 75, 100}. While performance increases with

larger beam size, the model also gets slower. This model outperforms the model suggested

in31, but could not reach the performance of18. Model training took about six hours on an

Nvidia V100.

For MHN and NeuralSym, the inference procedure contains the following steps. First

fingerprints for the given products have are generated. Then the model is used to predict

template relevance. For each product templates are executed in the order of their score until

a fixed number of reactant sets are obtained. To optimize top-k accuracy, it does not help to

generate more than k reactant sets. Therefore we set the number of reactant sets to generate

to {1, 3, 5, 10, 20, 50} optimize speed without loss of top-k accuracy for the respective k and

measured inference time. Speeds for the Transformer, NeuralSym, and MHN models have

been measured using an Nvidia Tesla T4 and 16 cores of an AMD EPYC 7542. We also

tested stopping template execution based on the cumulative probability of already executed

ones as done in5, however found that it did not improve upon stopping after a certain number

of reactants have been retrieved.
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S4 Additional Results

S4.1 Template relevance prediction
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Figure S1: Results of methods with different design elements on the USPTO-sm and USPTO-
lg datasets. Each method consists of a combination of the following elements: a) a network
MHN or DNN (blue or red line), b) whether pre-training is applied (squares or triangles), and
c) whether fingerprint filter (FPF) is applied for postprocessing (solid or dashed line). These
eight possible combinations are displayed as lines with their top-100 accuracy on the y-axis
and the different template frequency categories on the x-axis.
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Figure S2: Predictive performance of different methods in dependency of the fingerprint size.
Each method consists of a combination of the following elements: a) a network MHN or DNN
(blue or red line), and b) whether pre-training is applied (squares or triangles). These four
possible combinations are displayed as lines with their top-1, top-10 and top-100 accuracy.
Performance saturates at a fingerprint size of about 212=4096, and we therefore choose this
value for the other experiments.
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Figure S3: Comparison of methods with respect to their top-k accuracies. Each method
consists of a combination of the following elements: a) a network MHN or DNN (blue or red
line), b) whether pre-training is applied (squares or triangles), and c) whether FPF is applied
for postprocessing (solid or dashed line). These eight possible combinations are displayed
as lines with their k parameter on the x-axis and their top-k accuracy on the y-axis. MHNs
provide the best top-k accuracy with k larger or equal 10.
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S4.2 Single-step retrosynthesis

S4.2.1 USPTO-full

Table S4: Reactant top-k accuracy (%) on USPTO-full retrosynthesis. Bold values indicate
values within 0.1, green 1 and yellow within 3 percentage points to the maximum value.
Category ("Cat.") indicates whether a method is template-based (tb) or template-free (tf).
Methods in the upper part evalute on a version of USPTO-full with pre-processing according
to Tetko et al. 18 , whereas the lower part has a larger test set (some duplicates), different
pre-processing and split as described in Dai et al. 7 .

Abbr. Ref. Cat. Top-1 Top-2 Top-3 Top-5 Top-10 Top-20 Top-50

MHNreact ours tb 45.5 57.2 62.5 67.4 71.9 74.8 77.1
ATx100 18 tf 46.2 57.2 73.3

RetroPrime 32 tf 44.1 59.1 62.8 68.5
GLN 7 tb 39.3 63.7
MEGAN 33 tf 33.6 63.9 74.1
Neuralsym 4,7 tb 35.8 60.8
Retrosim 16 tb 32.8 56.1

S4.2.2 USPTO-50k further splits

Table S5: Different split-scenarios for reactant top-k accuracy (%) on USPTO-50k retrosyn-
thesis for MHNreact. Chronological split refers to a split where one trains on data <=2012,
validations on 2013 and tests on samples >2013 on a proportion of approx. 78:7:15. Dates
have been obtained where possible, through matching USPTO-50k reaction-id’s with the
original dataset34 (For 19 samples the year could not be determined). Note that the hyperpa-
rameters have been determined on the random split, and not on each split individually.

Split Top-1 Top-3 Top-5 Top-10 Top-20 Top-50

default random split 51.8±.2 74.6±.3 81.2±.2 88.1±.2 92.0±.1 94.0±.0

10-fold cross-validation 50.7±.6 73.2±.6 80.7±.4 87.2±.5 91.1±.5 93.5±.5

chronological split 43.3 65.9 74.9 82.9 88.4 92.2

S4.2.3 Reactant ranking comparison

In order to illustrate and compare the novelty and effectiveness of our method, we showcase

results of different methods, for the same synthesis goal. The ranking, and therefore preferred

synthesis-starting point is shown for Top-1 in the left column from Figure S5 to Figure
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S12. The results of 3 Methods are being compared: MHNreact, DNN corresponding to

Segler and Waller 4 trained using the MHNreact framework with the same input and our

re-implementation of a Transformer for single-step retrosynthesis31.
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26



S5 Hopfield Association Space

Figure S13 shows a t-Distributed Stochastic Neighbor Embedding (t-SNE) embedding of both

the reaction fingerprints and the learned embeddings. Each point is colored according to its

class as defined in17.

For example, reactions belonging to the type oxidations can be distant in the fingerprint

space (pink dots in the left plot in Figure S13), while in their learned representations are

closer (pink dots in right figure). Note that our model did not have access to these reaction

types. It can be seen that the chosen representation for reaction templates already captures

information about the relationship, and the same reaction types are represented closer after

embedding it using t-SNE.

TSNE on Template Fingerprint TSNE on Encoded Templates X

Heteroatom alkylation and arylation
Acylation and related processes
C-C bond formation
Protections
Deprotections
Reductions
Oxidations
Functional group interconversoin (FGI)
Functional group addition (FGA)

Figure S13: t-SNE downprojection of the reaction template fingerprints (left) and learned
representations of reaction templates X (right). The colors represent reaction types of
substructure-based expert systems as categorized by17.

S6 Illustrative Example for Single-Step Retrosynthesis

27



We want to predict how to synthesize a given molecule as seen in Figure S14. First the

molecule as well as multiple templates are encoded. Many templates could be applicable and

would produce reactants, but we only want to predict relevant templates, those that are likely

to correspondond to realistic reactions. MHNreact encodes the templates and associates

them with the learned molecular representation and returns a ranking of the templates.

Through encoding the templates, even templates with few training-data can be predicted.

The templates are executed on the molecule in order of the provided ranking, in this case

only the top-ranked template, which gives the reactants from which the desired molecule can

likely be synthesized.

Figure S14: Illustration of the process for single-step retrosynthesis

S7 Objective and loss functions

Loss on retrieved patterns. We provide a more general view on the objective and the

loss function from the perspective of Hopfield networks and retrieving patterns. The main

idea is to retrieve patterns from label space, rather than from Hopfield space, because the loss

functions operate in the label space. The last Hopfield layer of our architecture supplies both

p, the softmax vector of probabilities of drawing reaction templates, and ξnew, an average of

reaction template representations x. However, averages of reaction templates are no longer

reaction templates, but we are interested in the probability ℓξ of drawing an xk that fits to ξ.
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The probability ℓξ can still be computed via a slightly modified Hopfield network update,

where instead of retrieving from a memory X of template representations in Hopfield space,

we retrieve from the space of labels or scores. Such an update has been introduced previously

and uses stored patterns that are augmented by labels35 p.83ff.

The probability ℓξ of drawing a xk that fits to ξ can be computed by a modified Hopfield

network update:

qξ = L p = L softmax(βXTξ) , ℓξ = 1T qξ , (2)

where L ∈ RK×K is the diagonal matrix of labels that are zero or one and 1 ∈ RK is the

vector of ones. In general, L can be used to include unlabeled data points as stored patterns,

where L is a Gram matrix times a diagonal label matrix to transfer label information from

labeled data points to unlabeled data points. Lkk = 1 means that xk fits to ξ and Lkk = 0

means that xk does not fit to ξ. In the context of the Hopfield networks, if more than one

xk fits to ξ then all xk that fit to ξ constitute a metastable state. Instead of Lkk being equal

to zero or one, Lkk can give a non-negative score for how well xk does fit to ξ. In this case ℓξ

is the expected score.

In this general view, our objective is to minimize − log(ℓξ) . If Lkk is equal to zero or

one, log(ℓξ) is the log-likelihood of drawing a fitting xk. If only one xk fits (exactly one

Lkk is one), then our objective is equivalent to the cross-entropy (CE) loss for multi-class

classification. However, if more xl are labeled as fitting, then our objective is different from

CE, which might not be appropriate. If Lkk is a non-negative score for the molecule-template

pair, our approach will maximize the expected score.

Cross-entropy loss. In a simple setting, in which each molecule only has a single correct

reaction template in T , a categorical cross-entropy loss is equivalent to the suggested loss. We

encode the correct template by a one-hot vector y = (0, . . . , 0, 1, 0, . . . , 0), where 1 indicates

the position of the correct template in the template set t = tk. We then minimize the
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cross-entropy loss function ℓCE(y,p) = crossentropy(y,p) between ground truth y and the

model’s predictions p for a single pair of the training set and the overall loss is an average

over all such pairs. The corresponding algorithm is given in Alg. 1.

Contrastive loss in Hopfield space. An alternative to the cross-entropy loss would be

to use a contrastive loss on the retrieved pattern ξnew. This contrastive loss measures the

cosine similarity of the retrieved pattern with the correct stored patterns with the InfoNCE

function13,36:

ℓp(ξ
new,x+,X−) = InfoNCE(ξnew,x+,X−) (3)

where sim(., .) is a pairwise similarity function, x+ is the representation of the correct reaction

templates, and X− is the set of representations of the incorrect reaction templates, that are

contrasted against each other. This loss is equivalent to cross-entropy loss if a) 1/τ = β, b)

the similarity function is the dot product, and c) ξ is used instead of ξnew. Our experiments

show that this loss can lead to models with comparable performance to those trained with

cross-entropy loss. The according algorithm with pattern loss as alternative loss is shown in

Alg. 1. We envision that advances in estimating mutual information37,38 and contrastive

learning39 could lead to improved zero- and few-shot capabilities of our model.

We provide a formulation of our method as simplified pseudo-code in a Python/Pytorch12-

like language (see Algorithm 1). The pseudo-code provides a version with two stacked Hopfield

layers and three possible formulations of the loss function.
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Algorithm 1 MHN for reaction template prediction (simplified, e.g. skip-connections omitted).
#mol_encoder() — e.g. fully-connected or MPNN. Maps to dimension dm.
#template_encoder1() Maps to dimension dt1 .
#template_encoder2() Maps to dimension dt2 .
#m_train, t_train — pair of product molecule and reaction template from training set
#T — set of K reaction templates including t_train
#d — dimension of Hopfield space

## FORWARD PASS
T1_h = template_encoder1(T)#[d_t1,K]
T2_h = template_encoder2(T)#[d_t2,K]
m_h = mol_encoder(m_train)#[d_m,1]
xinew1,_,_ = Hopfield(m_h,T1_h,dim=d)
xinew,p,X = Hopfield(xinew1,T2_h,dim=d)
p=pool(p,axis=1) #[K,1]

## LOSS
# cross-entropy loss, association loss
label = where(T==t_train)#[K,1]
loss = cross_entropy(p,label)
# alternative 1: Hopfield loss
L = diag(where(T==t_train))#[K,K]
loss = -log(sum(L@p))
# alternative 2: contrastive loss
label = where(T==t_train)#[K,1]
pos = X[label] #[d,1]
neg_label = where(T!=t_train)#[K,1]
neg = X[neg_label] #[d,K-1]
loss = -InfoNCE(xinew,pos,neg)
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S8 List of Acronyms
CASP computer-assisted synthesis planning

CLIP Contrastive Language–Image Pre-training

ConVIRT Contrastive VIsual Representation Learning from Text

DNN deep neural network

ECFP extended connectivity fingerprint

FPF fingerprint filter

FP fingerprint

GLN graph logic network

InfoNCE Information Noise-Contrastive Estimation

MACCS molecular access system

MHFP mini-hash fingerprint

MHN modern Hopfield network

ML machine learning

NN neural network

SELU self-normalizing linear unit

SMARTS SMILES arbitrary target specification

SMILES simplified molecular-input line-entry system

USPTO United States patent and trademark office

t-SNE t-Distributed Stochastic Neighbor Embedding

References

(1) Baylon, J. L.; Cilfone, N. A.; Gulcher, J. R.; Chittenden, T. W. Enhancing Retrosynthetic

Reaction Prediction with Deep Learning Using Multiscale Reaction Classification. J.

Chem. Inf. Model. 2019,

(2) Ishida, S.; Terayama, K.; Kojima, R.; Takasu, K.; Okuno, Y. Prediction and Interpretable

Visualization of Retrosynthetic Reactions Using Graph Convolutional Networks. J. Chem.

Inf. Model. 2019, 59, 5026–5033.

32



(3) Fortunato, M. E.; Coley, C. W.; Barnes, B. C.; Jensen, K. F. Data Augmentation and

Pretraining for Template-Based Retrosynthetic Prediction in Computer-Aided Synthesis

Planning. J. Chem. Inf. Model. 2020, 60, 3398–3407.

(4) Segler, M. H. S.; Waller, M. P. Neural-Symbolic Machine Learning for Retrosynthesis

and Reaction Prediction. Chemistry 2017, 23, 5966–5971.

(5) Segler, M. H. S.; Preuss, M.; Waller, M. P. Planning Chemical Syntheses with Deep

Neural Networks and Symbolic AI. Nature 2018, 555, 604–610.

(6) Bjerrum, E. J.; Thakkar, A.; Engkvist, O. Artificial Applicability Labels for Improving

Policies in Retrosynthesis Prediction. ChemRxiv 2020,

(7) Dai, H.; Li, C.; Coley, C.; Dai, B.; Song, L. Retrosynthesis Prediction with Conditional

Graph Logic Network. Adv. Neural Inf. Process. Syst. 2019, 32, 8872–8882.

(8) Sun, R.; Dai, H.; Li, L.; Kearnes, S.; Dai, B. Energy-based View of Retrosynthesis.

arXiv (Machine Learning) 2020,

(9) Coley, C. W.; Green, W. H.; Jensen, K. F. RDChiral: An RDKit Wrapper for Handling

Stereochemistry in Retrosynthetic Template Extraction and Application. J. Chem. Inf.

Model. 2019, 59, 2529–2537.

(10) Morgan, H. L. The Generation of a Unique Machine Description for Chemical Structures-

A Technique Developed at Chemical Abstracts Service. J. Chem. Doc. 1965, 5, 107–113.

(11) Landrum, G. RDKit: Open-Source Cheminformatics. 2006, accessed on 2020-01-01.

(12) Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.;

Lin, Z.; Gimelshein, N.; Antiga, L.; Desmaison, A.; Köpf, A.; Yang, E.; DeVito, Z.;

Raison, M. Tejani, A.; Chilamkurthy, S.; Steiner, B.; Fang, L.; Bai, J.; Chintala, S.

Pytorch: An imperative style, high-performance deep learning library. Adv. Neural Inf.

Process. Syst. 2019, 32, 8026–8037.

33



(13) Oord, A. v. d.; Li, Y.; Vinyals, O. Representation learning with contrastive predictive

coding. arXiv (Machine Learning) 2018,

(14) Ba, J. L.; Kiros, J. R.; Hinton, G. E. Layer normalization. arXiv (Machine Learning)

2016,

(15) Loshchilov, I.; Hutter, F. Decoupled weight decay regularization. arXiv (Machine

Learning) 2017,

(16) Coley, C. W.; Rogers, L.; Green, W. H.; Jensen, K. F. Computer-Assisted Retrosynthesis

Based on Molecular Similarity. ACS Cent. Sci. 2017, 3, 1237–1245.

(17) Schneider, N.; Lowe, D. M.; Sayle, R. A.; Landrum, G. A. Development of a Novel Finger-

print for Chemical Reactions and Its Application to Large-Scale Reaction Classification

and Similarity. J. Chem. Inf. Model. 2015, 55, 39–53.

(18) Tetko, I. V.; Karpov, P.; Van Deursen, R.; Godin, G. State-of-the-Art Augmented NLP

Transformer Models for Direct and Single-Step Retrosynthesis. Nat. Commun. 2020,

11, 5575.

(19) Probst, D.; Reymond, J.-L. A probabilistic molecular fingerprint for big data settings.

J. Cheminf. 2018, 10, 1–12.

(20) Klambauer, G.; Unterthiner, T.; Mayr, A.; Hochreiter, S. Self-normalizing neural

networks. Adv. Neural Inf. Process. Syst. 2017, 972–981.

(21) Rogers, D.; Hahn, M. Extended-Connectivity Fingerprints. J. Chem. Inf. Model. 2010,

50, 742–754.

(22) Yan, C.; Ding, Q.; Zhao, P.; Zheng, S.; Yang, J.; Yu, Y.; Huang, J. RetroXpert:

Decompose Retrosynthesis Prediction like a Chemist. arXiv (Machine Learning) 2020,

(23) Somnath, V. R.; Bunne, C.; Coley, C. W.; Krause, A.; Barzilay, R. Learning graph

models for template-free retrosynthesis. arXiv (Machine Learning) 2020,

34



(24) Lee, H.; Ahn, S.; Seo, S.-W.; Song, Y. Y.; Hwang, S.-J.; Yang, E.; Shin, J. RetCL: A

Selection-Based Approach for Retrosynthesis via Contrastive Learning. arXiv (Machine

Learning) 2021,

(25) Hasic, H.; Ishida, T. Single-Step Retrosynthesis Prediction Based on the Identification

of Potential Disconnection Sites Using Molecular Substructure Fingerprints. J. Chem.

Inf. Model. 2021, 61, 641–652.

(26) Guo, Z.; Wu, S.; Ohno, M.; Yoshida, R. A Bayesian Algorithm for Retrosynthesis. J.

Chem. Inf. Model. 2020, 60, 4474–4486.

(27) Schwaller, P.; Laino, T.; Gaudin, T.; Bolgar, P.; Hunter, C. A.; Bekas, C.; Lee, A. A.

Molecular Transformer: A Model for Uncertainty-Calibrated Chemical Reaction Predic-

tion. ACS Cent. Sci. 2019, 5, 1572–1583.

(28) Ishiguro, K.; Ujihara, K.; Sawada, R.; Akita, H.; Kotera, M. Data Transfer Approaches

to Improve Seq-to-Seq Retrosynthesis. arXiv (Machine Learning) 2020,

(29) Ucak, U. V.; Kang, T.; Ko, J.; Lee, J. Substructure-based neural machine translation

for retrosynthetic prediction. J. Cheminf. 2021, 13, 4.

(30) Liu, B.; Ramsundar, B.; Kawthekar, P.; Shi, J.; Gomes, J.; Luu Nguyen, Q.; Ho, S.;

Sloane, J.; Wender, P.; Pande, V. Retrosynthetic Reaction Prediction Using Neural

Sequence-to-Sequence Models. ACS Cent. Sci. 2017, 3, 1103–1113.

(31) Karpov, P.; Godin, G.; Tetko, I. V. A transformer model for retrosynthesis. Int. Conf.

on Artif. Neur. Netw. 2019, 817–830.

(32) Wang, X.; Li, Y.; Qiu, J.; Chen, G.; Liu, H.; Liao, B.; Hsieh, C.-Y.; Yao, X. RetroPrime:

A Diverse, Plausible and Transformer-Based Method for Single-Step Retrosynthesis

Predictions. Chem. Eng. J. 2021, 420, 129845.

35



(33) Sacha, M.; Błaz, M.; Byrski, P.; Dabrowski-Tumansski, P.; Chrominsski, M.; Loska, R.;

Włodarczyk-Pruszynski, P.; Jastrzebski, S. Molecule edit graph attention network:

modeling chemical reactions as sequences of graph edits. J. Chem. Inf. Model. 2021, 61,

3273–3284.

(34) Lowe, D. M. Extraction of chemical structures and reactions from the literature. Ph.D.

thesis, University of Cambridge, 2012.

(35) Ramsauer, H.; Schäfl, B.; Lehner, J.; Seidl, P.; Widrich, M.; Gruber, L.; Holzleitner, M.;

Adler, T.; Kreil, D.; Kopp, M. K.; Klambauer, G.; Brandstetter, J.; Hochreiter, S.

Hopfield Networks is All You Need. Int. Conf. Learn. Rep. 2021,

(36) Chen, T.; Kornblith, S.; Norouzi, M.; Hinton, G. A simple framework for contrastive

learning of visual representations. Int. Conf. Mach. Learn. 2020, 1597–1607.

(37) Poole, B.; Ozair, S.; vanDenOord, A.; Alemi, A. A.; Tucker, G. On Variational Bounds

of Mutual Information. Proc. 36th Int. Conf. Mach. Learn. 2019, 97, 5171–5180.

(38) Cheng, P.; Hao, W.; Dai, S.; Liu, J.; Gan, Z.; Carin, L. CLUB: A Contrastive Log-ratio

Upper Bound of Mutual Information. Proc. 37th Int. Conf. Mach. Learn. 2020, 119,

1779–1788.

(39) Fürst, A.; Rumetshofer, E.; Tran, V.; Ramsauer, H.; Tang, F.; Lehner, J.; Kreil, D.;

Kopp, M.; Klambauer, G.; Bitto-Nemling, A.; Hochreiter, S. CLOOB: Modern Hopfield

Networks with InfoLOOB Outperform CLIP. arXiv (Machine Learning) 2021,

36


	Notation
	Further related work
	Details on Experiments
	Template relevance prediction
	Datasets and preprocessing
	Data splits
	Feature extraction 
	Training
	Hyperparameter selection and model architecture

	Single-step retrosynthesis
	Datasets and preprocessing
	Feature extraction
	Hyperparameters and model architecture
	Methods omitted from comparison
	Inference speed


	Additional Results
	Template relevance prediction
	Single-step retrosynthesis
	USPTO-full
	USPTO-50k further splits
	Reactant ranking comparison


	Hopfield Association Space
	Illustrative Example for Single-Step Retrosynthesis
	Objective and loss functions
	List of Acronyms
	References

