YMTHE, Volume 30

Supplemental Information

Host liver-derived extracellular

vesicles deliver miR-142a-3p induces neutrophil

extracellular traps via targeting WASL to block the development of

Schistosoma japonicum

Lifu Wang, Zifeng Zhu, Yao Liao, Lichao Zhang, Zilong Yu, Ruibing Yang, Ji Wu, Zhongdao Wu, and Xi Sun

Supplemental Information

1

6

7

Host Liver-Derived Extracellular Vesicles Deliver miR-142a-3p Induces
 Neutrophil Extracellular Traps via Targeting WASL to Block the Development
 of Schistosoma japonicum

5 Lifu Wang, Zifeng Zhu, Yao Liao, Lichao Zhang, Zilong Yu, Ruibing Yang, Ji Wu,

Zhongdao Wu, and Xi Sun

8 Figure S1. miRNAs of EVs derived from liver of S. japonicum-infected mice (IL-

9 EVs) and normal liver-derived EVs (IL-EVs) were sequenced and analyzed. (A)
10 Volcano diagrams of miRNAs derived from the comparative gene expression analyses.
11 Red dots represent up-regulated miRNAs, and green dots represent down-regulated
12 miRNAs. (B) Heat map analysis shows differentially expressed miRNAs. Bright
13 green=low expression; bright red=high expression.

14

- 15 Figure S2. HBAAV2/9-miR-142a-3p was constructed and successfully transfected
- 16 into mice (HBAAV2/9 expresses GFP). HBAAV2/9-miR-142a-3p colonization in
- 17 the liver was analyzed by fluorescence microscopy.

18

19 Figure S3. NETs were observed in the granulomas of *S. japonicum*. (A) Location

20 of NETs in liver sections was observed based on H3cit and MPO co-localization. (B)

- 21 Co-localization of H3cit, MPO, and α -SMA was observed by immunofluorescence.
- 22

Figure S4. Neutrophils were isolated using Percoll density gradient
centrifugation and flow cytometry.

Figure S5. miR-142a-3p attenuated liver fibrosis in *S. japonicum* infection. (A)
Fibrosis was observed in liver sections stained with Masson's trichrome. (B)
Expression levels of α-SMA and collagen I in mouse liver were analyzed by qRT-PCR
(n=8-9 mice per group). (C) Expression levels of α-SMA and collagen I in mouse
liver were analyzed by Western blotting. Results are shown as mean ± SD (one-way
ANOVA with Dunnett's multiple comparison test).

Figure S6. High expression of the inflammatory cytokines IL-1β (A), IL-23A (B), IL33 (C), and TNF-α (D) in liver tissues during *S. japonicum* infection decreased
significantly after HBAAV2/9-miR-142a-3p treatment (n=7-12 mice per group).

38 Figure S7. WASL-deletion attenuated liver fibrosis in *S. japonicum* infection. (A)

39 Fibrosis was observed in liver sections stained with Masson's trichrome. (B)

40	Expression levels of α -SMA and collagen I in mouse liver were analyzed by Western
41	blotting. Results are shown as mean \pm SD (one-way ANOVA with Dunnett's multiple
42	comparison test).

43 Table S1. Particle characteristics and yield of NL-EVs and IL-EVs

	NL-EVs	IL-EVs
Mice	n=10	n=10
Cell culture time of liver tissues	24 h	24 h
Cell density (cells/mL)	1×10^{6}	1×10^{6}
Particle concentration	9.72×10 ¹⁰	6.69×10 ¹⁰
(particles/mL)		
Protein concentration (mg/mL)	7.34	5.21
Total volume of EVs (in PBS)	300 µL	400 µL

44

45 Table S2. The top ten differentially-expressed miRNA (IL-EVs/NL-EVs).

46

NO.	miRNA	log2FC	regulated
1	mmu-miR-142a-3p	7.753542806	Up
2	mmu-miR-223-3p	7.615122837	Up
3	mmu-miR-677-5p	7.006138383	Up
4	mmu-miR-146b-5p	6.866236731	Up
5	mmu-miR-186-5p	5.572362953	Up
6	mmu-miR-132-3p	5.49367909	Up
7	mmu-miR-350-3p	5.333210545	Up

	8	mmu-miR-485-5p	5.322722633	Up
	9	mmu-miR-30b-5p	5.315091289	Up
	10	mmu-miR-221-3p	5.176670648	Up
47				
48				
49				
50				
51				
52				
53				
54				
55				
56				
57				
58				
59				
60				
61				
62				
63				
64				
65				

66 WASL gene knockout mice

67 Gene: ENSMUSG0000031165

- 68 Description: Wiskott-Aldrich syndrome [Source:MGI Symbol;Acc:MGI:105059]
- 69 Location: Chromosome X: 7,947,692-7,956,737 reverse strand.
- 70 Primers' sequences: "GGCCCTGGAGGACTTATTTC" and

71 "AGCTCAGGGGGGTCACTGATA"

72 PCR products: WT (811 bp) and KO (~200 bp)

PCR Reaction

2×Taq Master Mix	7.5 μL
Forward primers (10 µM)	0.3 μL
Reverse primers (10 μ M)	0.3 µL
Genomic DNA (20 ng/µL)	1.0 µL
Add H2O up to	15 μL

73

PCR Program		
	94 °C	5 min
	94 °C	30 sec
35 cycles	− 60 °C	30 sec
	└ 72 °C	70 sec
	72 °C	10 min

74

75 PCR products: WT (811 bp) and KO (~200 bp)

	-		-	
	(kb) 2000	WT	ко	
	1000 750 500			
	250 100		-	
76				
77				
78				
79				
80				
81				
82				
83				
84				
85				
86				
87				
88				
89				

90 Negative control for immunofluorescence

91

92 Negative control for immunofluorescence

Figure (A) Neutrophils were treated with PMA (500 nM, 4 h), and the non-specific

staining effect of the secondary antibody was excluded by direct use of secondary

- 95 antibody without adding primary antibody. (B) The non-specific staining effect of the
- secondary antibody on liver slices was excluded by direct use of secondary antibody
- 97 without adding primary antibody.

- 98 Uncropped western blotting
- 99 Figure 1B

103 Figure 7B

- 104
- 105 Figure 7D

107 Figure 8E

108

109 Figure 8K

111 Figure 8L

GAPDH

114