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Supplemental Figure 1 (related to Figure 1)

Metabolic and epigenetic landscape of HSCs and downstream progenitors

(A) Representative gating scheme for flow cytometric cell sorting.

(B) Summary of titration experiments performed to establish targeted metabolomics
methods. Correlation between cellular input and number of detected metabolites. Exemplary
metabolites shown. Red dotted line indicates background level detected in negative controls.
(C) Table summarizing and comparing targeted metabolomics approaches performed on
HSCs.

(D) Principle component analysis (PCA) of RNA-seq data from HSCs and MPPs. Based on
top 5,000 variable genes. n=3.

(E) DAVID GO-term analysis using "Biological Processes"”based on the top 3,000 up- and
down-regulated DEGs (padj.<0.1) in HSCs or MPPs.

(F) Schematic integration of targeted metabolomics results on HSCs+MPP1 and MPPs.
Normalized expression counts (RNA-seq data from HSCs and MPPs; DESeq2) of selected
metabolic genes are shown in bar diagrams. Metabolite names are shown in red when up-
regulated in HSCs+MPP1 and in blue when up- regulated in MPPs. Significances calculated
as adjusted p-values by DESeq2 *padj. <0.1; **p <0.05; ***p <0.01.

Schematic view of findings. Expression data of enzymes (RNA-seq; padj.<0.1) are shown as
colored lines, red representing up-regulated in HSCs, and blue up-regulated in MPPs. Dots
represent metabolites up in HSCs+MPP1 (red) or MPPs (blue).

(G) Motif enrichment analysis on DEGs between HSCs and MPPs for main metabolic
processes using i-cis target tool. NES, Normalized enrichment score; PWM, position weight
matrix.

(H) Heatmap showing clustering of ATAC-seq on HSCs and MPPs. OCRs unique to HSCs,
unique to MPPs or shared are shown.

(I) GSEA of the top 300 ATAC-specific OCRs in log2FC ranked HSCs vs. MPPs RNA-seq

dataset. n=3.



(J) DAVID GO-term analysis using "Biological Processes" based on genes annotated to
OCRs specific to HSCs or MPPs.

(K) Digital footprinting analysis metabolic and hematopoietic TF motifs on ATAC-seq data
from HSCs and MPPs. Motif occupancy on forward and reverse strand (red, blue).
Significance indicated by paired student’s t-test. *p <0.05; **p <0.01; ***p <0.001. ns- not
significant.

(L) Titration experiment for ChlP-seq establishment on 1,000 compared to 10,000 LSK cells
for H3K4me3 showing Pearson's correlation and gene tracks.

(M) Comparison of H3K4me3 and H3K27me3 data set on HSCs and MPPs with a publicly
available data set (Zheng et al., 2015).*HSCs: LSK FIk2'CD34", *MPPs: LSK FIk2'CD34".
(N) Heatmap showing global clustering of H3K4me3 and H3K27me3 ChlP-seq row z- scores

at gene transcription start site (TSS) in HSCs and MPPs. n=2-3.

(O) GSEA of selected Reactome pathways on H3K4me3 ChlP-seq in HSCs or MPPs

(P) GSEA of selected Reactome pathways on H3K27me3 ChlP-seq in HSCs or MPPs.
(Q) Swarm plots showing correlation between RNA-seq (DEGs in MPPs versus HSCs,
padj.<0.1) ATAC-seq, H3K4me3 and H3K27me3 ChIP-seq data (no threshold). Pearson’s
correlation coefficient between transcriptome and OCRs (0.5, moderate), H3K4me3 (0.72,
strong) and H3K27me3 (-0.16, very weak).

(R) Gene tracks showing exemplified genes with corresponding RNA-seq ATAC-seq,
H3K4me3 and H3K27me3 ChlIP-seq coverage.

(S) MTE-plots integrating metabolomics, RNA-seq, ATAC-seq, H3K4me3 and H3K27me3
ChlP-seq data on selected KEGG-pathways. Depicted is log2FC between HSCs(+MPP1)
and MPPs, red indicates up-regulated in HSCs, blue up-regulated in MPPs. Significances
calculated by unpaired student’s t-test (metabolomics data set; *p <0.05; **p <0.01; ***p
<0.001) or by DESeq2 p-adjusted value (RNA-seq, ATAC-seq, ChIP-seq data sets; *p <0.1;
**p <0.05; ***p <0.01). Inner circles indicate the average tendencies of the entire KEGG

pathway per data set, outer circles show individual genes/metabolites.



For all panels, n indicates number of biological replicates.
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Supplemental Figure 2 (related to Figure 2)
Lack of dietary vitamin A leads to loss of metabolic HSC identity and triggers

differentiation

(A) Targeted metabolomics results on liver of VAF and control diet. Depicted is fold change
(FC) compared to control condition. n=9.

(B) Flow cytometric analysis of total HSC numbers in control and VAF. Cells per total mouse
BM is shown. n=14-15.

(C) Representative gating scheme for flow cytometric analysis of cell cycle.

(D) Flow cytometric analysis of BM differentiated cell frequencies in control and VAF.
Percentage of single cells is shown. n=12-15.

(E) Representative gating scheme for CD45.2 chimerism in PB.

(F) Flow cytometric analysis of CD45.2 PB chimerism of 1° and 2° competitive WBM
transplantation assay of VAF and control conditions. Shown is B-cell, myeloid (MY)-cell and
T-cell contribution over time as percentage of CD45.2 chimerism. n=9-16.

(G) PCA of RNA-seq data from VAF and control HSCs. Based on top 5,000 variable genes.
n=3.

(H) RNA-seq data showing GSEA plots of published signatures in VAF vs. control HSCs.

(I) Schematic integration of targeted metabolomics results on VAF HSCs+MPP1 and VAF
MPPs. Targeted metabolomics quantification depicted in bar diagrams. FC+SD relative to
control-HSCs+MPP1. n=6-12.

(J) MTE-plots on the two KEGG pathways "retinol metabolism" and "TCA-cycle”. Depicted is
log2FC between HSCs(+MPP1) in VAF and control; grey indicates up-regulated in control,
green up-regulated in VAF. Significances calculated using an unpaired student’s t-test
(metabolomics data set; *p <0.05; **p <0.01; ***p <0.001; ns, not significant) or by DESeq2
adjusted p-value (RNA-seq data set; *padj. <0.1; **p <0.05; ***p <0.01). Inner circles indicate
the average tendencies of the entire KEGG pathway per data set; outer circles show

individual genes/metabolites.



(K) ATAC-seq clustering on VAF and control HSCs. Heatmap of OCR peaks unique to
control and VAF HSCs or shared. n=3.

(L) GSEAoftop 300 ATAC-specific OCRs in HSCs vs. MPPs log2FC ranked RNA-seq
comparison.

(M) Exemplary gene tracks on genes changing expression and chromatin accessibility in
VAF HSCs compared to control.

(N) ATAC-seq digital footprinting analysis showing Tn5 insertions on forward and reverse
strand (red, blue). IRF motif (half-site) in VAF and control HSCs.

(O) RT-gPCR validation of RNA-seq results on Cyp26 enzymesgene expression in VAF and
control HSCs. Normalized mean relative to Oaz1,B2m,and Tbp expression and relative to

Cyp26b1. ND, not detected; GE, gene expression.

(A)-(B), (D), (F), (), (O), mean +SD; (A)-(B), (), (O), unpaired student’s t-test. (D), and (F):
two-way ANOVA. *p <0.05; **p <0.01; ***p <0.001; ns, not significant. Significance levels
compared to control. n indicates number of biological replicates. For (A)-(B), (D),(F),(G), (I)

and (O) two or more independent experiments were performed.
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Supplemental Figure 3 (related to Figure 3)

Cyp26b1 is critical for HSC self-renewal and quiescence

(A) RT-gPCR analysis of Cyp26 enzyme gene expression in Mx1Cre, Cyp26b1™ (controls)
and Mx-Cyp26b1” (KO) HSCs. Normalized mean relative to Oaz1, B2m, and Tbp expression
and relative to Cyp26b1 in Cyp26b1"" HSCs is shown. ND, not detected; GE, gene
expression.

(B) Flow cytometric analysis of HSC frequency in Mx7Cre, Cyp26b1™ and Mx-Cyp26b1”
mice. Percentage of single cells is shown. n=12-16.

(C) Flow cytometric analysis of HSC total numbers in Mx1Cre, Cyp26b1™ and Mx-Cyp26b1™".
Number of total HSCs per mouse BM is shown. n=10-13.

(D) Flow cytometric analysis of HSC cell cycle in Mx1Cre, Cyp26b1™ and Mx-Cyp26b17.
Percentage of cell cycle phase (GO, G1, G2/S/M) is shown. n=16.

(E) Single cell (SiC) division assay of Mx1Cre, Cyp26b1"" and Mx-Cyp26b1”- HSCs.
Frequency of cells is shown in percent. n=12.

(F) Flow cytometric analysis of MPPs frequencies in Mx1Cre, Cyp26b1™ and Mx-Cyp26b17”-
mice. Percentage of single cells is shown. n=8-12.

(G) Flow cytometric analysis of differentiated BM cell frequencies in Mx71Cre, Cyp26b1™ and
Mx-Cyp26b1”- mice. Percentage of single cells is shown. n=8-9.

(H) Flow cytometric analysis of CD45.2 PB chimerism of 1° and 2° competitive WBM
transplantation assay of Cyp26b1"" and Mx-Cyp26b17- conditions. Shown is B-cell, myeloid
(MY) cell and T-cell contribution over time as percentage of CD45.2 chimerism. n=9-16.

(I) Representative gating scheme of flow cytometric analysis of BM CD45.2+ HSCs 16 weeks
after transplantation.

1ﬂ/fl (

(J) RT-gPCR analysis of Cyp26b1 gene expression in Sc/Cre, Cyp26b controls) and Scl-
Cyp26b1” (KO) HSCs. Normalized mean relative to Oaz1, B2m, and Thp expression and

relative to Cyp26b1 in Cyp26b1™ HSCs is shown. GE, gene expression.



(K) Flow cytometric analysis of HSC frequency in Sc/Cre, Cyp26b1"" and Scl-Cyp26b1”
mice. Percentage of single cells is shown. n=10.

(L) Flow cytometric analysis of HSC numbers in ScICre, Cyp26b1™ and Scl-Cyp26b17mice.
Absolute frequency of HSCs per mouse BM is shown. n=10.

(M) Flow cytometric analysis of MPPs frequency in SciCre, Cyp26b1™ and Scl-Cyp26b1™
mice. Percentage of single cells is shown. n=10.

(N) Flow cytometric analysis of BM differentiated cell frequency in ScICre, Cyp26b1™ and
Scl-Cyp26b17 mice. Percentage of single cells is shown. n=10.

(O) Flow cytometric analysis of cell cycle phase distribution in Sc/Cre, Cyp26b1"" and Scl-
Cyp26b17-HSCs. Percentage of cells in cell cycle phase (G0, G1, G2/S/M) is shown. n=10.
(P) SiC division assay of Sc/Cre, Cyp26b1™"" and Scl-Cyp26b1”- HSCs. Frequency of cells is
shown in percent. n=10-12.

(Q) Colony-forming unit (CFU) assay of Cyp26b1™ and Scl-Cyp26b1” HSCs. First, second
and third plating. Colony numbers are normalized to control per plating. n=8.

(R) Flow cytometric analysis of CD45.2 PB chimerism of 1° and 2° competitive WBM
transplantation assay of Cyp26b1™""(CD45.2 control) and Scl-Cyp26b1” (CD45.2 KO) versus
CD45.1/2 cells. Shown is the percentage CD45.2 chimerism over time. n=7-9.

(S) Flow cytometric analysis of CD45.2 PB chimerism of 1° and 2° competitive WBM

M and Scl-Cyp26b17- conditions. Shown is B-cell, myeloid

transplantation assay of Cyp26b1
(MY) cell and T-cell contribution over time as percentage of CD45.2 chimerism. n=9-16.

(T) Flow cytometric analysis of HSC frequency in Cyp26b1"" and Mx-Cyp26b1” 7-months
(7M) after deletion of Cyp26b1. Percentage of single cells is shown. n=8-9.

(U) Flow cytometric analysis of MPP frequency in Cyp26b1"" and Mx-Cyp26b1” 7M after
deletion of Cyp26b1. Percentage of single cells is shown. n=9.

(V) Flow cytometric analysis of BM differentiated cell frequency in Cyp26b1™" and Mx-
Cyp26b17 7M after deletion of Cyp26b1. Percentage of single cells is shown. n=9.

(W) SiC division assay of Cyp26b1" and Mx-Cyp26b1”"HSCs 7M after deletion of Cyp26b1.

Frequency of cells is shown in percent. n=9-12.



(X) PCA of RNA-seq data from Mx-Cyp26b 17 compared to Cyp26b1"" HSCs. Based on top
5,000 variable genes. n=3.

(Y) RNA-seq showing GSEA of published signatures in Mx-Cyp26b1”- HSCs compared to
Cyp26b1™ n=3.

(Z) RNA-seq showing GSEA of published signatures in 7M Mx-Cyp26b17- HSCs compared
to 7M Cyp26b 1™ n=2.

(AA) RNA-seq showing GSEA of selected Reactome pathways in Mx-Cyp26b17- compared
to Cyp26b1"HSCs. n=3.

(AB) Gene set enrichment of down-regulated genes in VAF HSCs (padj.<0.1) in 7M Mx-
Cyp26b17 versus 7TM Cyp26b1"" HSCs RNA-seq dataset.

(AC) Heatmap showing shared and specific OCRs in ATAC-seq on Mx-Cyp26b 17 compared
to Cyp26b1" HSCs. n=2.

(A)-(G), (J)-(W), mean +SD; (A)-(C), (F), (J)-(M), (Q), (T), unpaired student’s t-test. (D)-(E),
(G)-(H), (N)-(P), (R)-(S), (V), (W), two-way ANOVA. *p <0.05; **p <0.01; ***p <0.001. ns, not
significant. n indicates number of biological replicates. Significance levels compared to
control. For (A)-(H), (J)-(S) and (W)-(Z) two or more independent experiments were

performed.
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Supplemental Figure 4

K Comparison RNA-seq data sets
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Supplemental Figure 4 (related to Figure 4)

4-oxo0-RA regulates HSC function

(A) Representative gating scheme for live/dead cells after in vitro treatments of Lin\CD48"
cells with DMSO, at-RA and 4-oxo-RA. Flow cytometric analysis of HSCs. n=12.

(B) Seahorse assay after 72-h in vitro treatment of 5x10° LSK cells with DMSO, at-RA and
4-oxo-RA. Representative Seahorse assay showing oxidative consumption rate (OCR) in
pmol/min over time after Oligomycine, FCCP and Antimycine A + Rotenone injection. Basal
respiration is shown in pmol/min. Maximal respiration is normalized to DMSO. n=8-10. (C)
Flow cytometric analysis of mitochondrial content after 24-h in vitro treatments of Lin"CD48
cells with DMSO, at-RA, and 4-oxo-RA. Shown is median fluorescence intensity

(MF1) of Mitotracker green. Gated on HSCs. n=5.

(D) PCA of 24-h in vitro treatment RNA-seq data. Based on top 5,000 variable genes. n=3.

(E) RNA-seq data showing GSEA of published signatures comparing 4-oxo-RA and DMSO
conditions of 24-h in vitro treatment HSCs+MPP1.

(F) RNA-seq data showing GSEA of published signatures comparing 4-oxo-RA and at-RA
conditions of 24-h in vitro treatment HSCs+MPP1.

(G) RNA-seq data showing GSEA of selected "Reactome pathways" comparing 4-oxo-RA
and at-RA conditions of 24-h in vitro treatment HSCs+MPP1.

(H) RT-gPCR of gene expression of in vitro-treated HSCs+MPP1. Validation of RNA-seq
results for in vitro treatments (24h). Depicted is gene expression after 2-h and 24-h DMSO,
at-RA, and 4-oxo-RA treatment is depicted. Normalized to mean of fresh (0-h) HSCs+MPP1
relative to Oaz1 expression. n=3-4.

(I) Gene expression over the course of differentiation. Depicted is the median of RNA-seq
read counts in HSCs and MPP1/2/3/4, respectively (data published in Cabezas-Wallscheid
et al., 2014) for all genes associated in each cluster (in vitro treatments RNA-seq heatmap).

Normalized RNA-seq read counts are shown.



(J) RNA-seq showing gene set enrichment of up- and down-regulated genes in VAF HSCs
(padj.<0.1) in 4-oxo-RA versus DMSO in vitro-treated HSCs+MPP1.

(K) Heatmap of RNA-seq data of 24-h in vitro-treated HSCs+MPP1. Unbiased clustering
identified 4 main clusters. Comparison to RNA-seq normalized counts heatmap in VAF

HSCs, MPPs, Mx-Cyp26b17- HSCs and 7 months (7M) Mx-Cyp26b1”-HSCs.

(A)-(C), (H): mean +SD, (A), (C), (H), unpaired student’s t-test. *p <0.05; **p <0.01; ***p
<0.001; ns, not significant. n indicates number of biological replicates. Significance levels
compared to control. For (A)-(C), and (H) two or more independent experiments were

performed.
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Supplemental Figure 5 (related to Figure 5)

The Cyp26b1 downstream metabolite 4-oxo-RA is required for HSC maintenance

(A) RNA-seq data showing GSEA of published MPP signature (Cabezas Wallscheid et al.,
2014) comparing Cyp26b1"" and Mx-Cyp26b17-HSCs+MPP1 for each 24h in vitro treatment
DMSO, at-RA, and 4-oxo-RA, respectively. Normalized enrichment score (NES) and -
log(padj.) are shown.

(B) Workflow showing single cell (SiC) division assay after in vitro treatment of Mx-
Cyp26b1”- compared to Cyp26b 1" with DMSO, retinol, at-RA, and 4-oxo-RA. SiC division
assay of treated HSCs. Percentage of single cells is shown. n=12. Two-way ANOVA
performed. *p <0.05; **p <0.01; ***p

<0.001; ns, not significant.
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Supplemental Figure 6 (related to Figure 6)

Rarb is required to mediate 4-oxo-RA-dependent maintenance of HSC self-renewal

(A) Single cell data set from Dahlin et al. 2018, published in Blood (Dahlin et al., 2018).
Expression of RA receptors within a Lin c-Kit* compartment.

(B) RT-gPCR validation of RNA-seq results on RAR gene expression in VAF and control
HSCs. Normalized mean relative to Oaz1, B2m and Tbp expression and relative to Rarb.
ND, not detected; GE, gene expression

(C) Representative gating scheme after transfection.

(D) RT-gPCR analysis of Rarb gene expression after in vitro Rarb knock-down with sh
Renilla (control) and shRarb. Normalized mean expression relative to Oaz1 is shown. n=4-6.
GE, gene expression.

(E) Representative gating scheme for CD45.2 chimerism of Rarb KD transplantation.

(F) RT-gPCR analysis of Rara, Rarb and Rarg gene expression in Rarb KO and Rarg KO

HSCs compared to control. Normalized mean relative to Oaz1, B2m, and Tbp expression
and relative to Rarb expression in control HSCs is shown. n=6. GE, gene expression.

(G) Flow cytometric analysis of CD45.2* HSCs 16 weeks after 1° transplantation of HSCs
derived from Rarb KO mice. Percentage of CD45.2 cells is shown. n=8-9.

(H) Workflow showing single cell (SiC) division assay after in vitro treatment of control
compared to Rarg KO with DMSO, at-RA and 4-oxo-RA. SiC division assay of treated HSCs.
Percentage of single cells is shown. n=9.

(I) Workflow depicting colony-forming unit (CFU) assay after in vitro treatment of control
compared to Rarg KO with DMSO, at-RA and 4-oxo-RA. CFU assay after 72h of treated
HSCs. Number of colonies normalized to control DMSO treatment of each corresponding
plating. n=5-8.

Panels (B), (D), (F)-(l), mean +SD; (B), (D), (F)-(G), (I), unpaired student’s t-test; (H), two-
way ANOVA. *p <0.05; **p <0.01; ***p <0.001. ns, not significant. n indicates number of
biological replicates. Significance levels compared to control. For (B) and (D)-(G), two or

more independent experiments were performed.



	STEM3155_illustmmc.pdf
	STEM3155_illustmmc.pdf
	Supp Figure 1
	Supp Figure 2
	Supp Figure 3
	Supp Figure 4
	Supp Figure 5
	Supp Figure 6
	Supplemental Information Figures 1-6_230921





