
Supporting Information

Algorithm for the Pruning of Synthesis Graphs

Gergely Zahoránszky-Kőhalmi 1,*, Nikita Lysov1, Ilia Vorontcov1, Jeffrey Wang1,

Jeyaraman Soundararajan1, Dimitrios Metaxotos1, Biju Mathew1, Rafat Sarosh1,

Samuel G. Michael1, Alexander G. Godfrey1

1National Center for Advancing Translational Sciences, Rockville, Maryland 20850, United States

*Corresponding author:

Gergely Zahoránszky-Kőhalmi, PhD: gergely.zahoranszky-kohalmi@nih.gov

Mathematical Framework of the SGP Algorithm

Terminology

A starting material is a substance is readily available from the inventory or stock, i.e. “off the

shelf”. Naturally, a synthesis can only start from starting materials.

An intermediate in a multi-step synthesis context is a substance that is the product of a reaction

and is also the reactant (or reagent) of a subsequent reaction. Note, that in synthesis planning,

a substance that plays an intermediate role in the synthesis might be available from the

inventory. Those substances will be considered as starting materials, despite their role in the

synthesis.

A target molecule is a substance that one aims to synthesize, typically via a series of reactions.

A synthesis graph 1,2 𝐺 is a directed bipartite graph 3 consisting of set of reaction nodes 𝑅 and a

set of substance nodes 𝑆. The set of directed edges 𝐸 is defined by the set of (𝑆 × 𝑅) ∪ (𝑅 × 𝑆)

defined by 2-tuples in the form of (𝑠 ∈ 𝑆, 𝑟 ∈ 𝑅) or (𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆). Each substance node 𝑠 ∈ 𝑆

has an attribute, called type, 𝑠. 𝑡𝑦𝑝𝑒 ∈ {𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔	𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙, 𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒, 𝑡𝑎𝑟𝑔𝑒𝑡	𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒}.

In 𝐺 there can be only one node 𝑠 whose type attribute is “target molecule”, i.e.

|{𝑠! ∈ 𝑆	|	𝑠! . 𝑡𝑦𝑝𝑒 = 𝑡𝑎𝑟𝑔𝑒𝑡	𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒}| = 	1. Each edge 𝑒 ∈ 𝐸 is associated with an edge

attribute, called role, 𝑒. 𝑟𝑜𝑙𝑒 ∈ {𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡, 𝑟𝑒𝑎𝑔𝑒𝑛𝑡, 𝑝𝑟𝑜𝑑𝑢𝑐𝑡}, so that 𝑒. 𝑟𝑜𝑙𝑒 ∈

{𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡, 𝑟𝑒𝑎𝑔𝑒𝑛𝑡}	|	𝑒 ∈ (𝑆	 × 𝑅) and 𝑒. 𝑟𝑜𝑙𝑒 = 𝑝𝑟𝑜𝑑𝑢𝑐𝑡	|	𝑒 ∈ (𝑅 × 𝑆). In the current study,

it is assumed that each reaction is irreversible, and has only one product. Furthermore, only

one edge can exist between a given pair of 𝑠 and 𝑟 nodes.

Definitions

Def 1: A node 𝑛" is the parent node of 𝑛# if (𝑛" ∈ 𝑆, 𝑛# ∈ 𝑅) ∈ 𝐸 or (𝑛" ∈ 𝑅, 𝑛# ∈ 𝑆) ∈ 𝐸.

Def 2: A node 𝑛# is the child node of 𝑛" if (𝑛" ∈ 𝑆, 𝑛# ∈ 𝑅) ∈ 𝐸 or (𝑛" ∈ 𝑅, 𝑛# ∈ 𝑆) ∈ 𝐸.

Def 3: The number of parent nodes of a node 𝑛 is defined by the function in-degree 4, i.e.

deg$%(𝑛).

Def 4: The number of child nodes of a node 𝑛 is defined by the function out-degree 4, i.e.

deg&'!(𝑛).

Def 5: A synthesis route 𝑊 is directed acyclic subgraph of 𝐺 comprised of substance and

reaction nodes, starting from one or more starting material(s) 𝑠(∈ 𝑆	|	∀𝑠(: 𝑠(. 𝑡𝑦𝑝𝑒 =

𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔	𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 and ending in 𝑠! ∈ 𝑆 target molecule. It is true, that for every substance in

𝑊 which are the products of a reaction in 𝑊, there exists a set of starting materials in 𝑊 which

are the starting nodes of paths leading to those products. One synthesis route is uniquely

distinguished from any other synthesis routes in 𝐺 by the set of its {𝑠 ∈ 𝑆} substance and

{𝑟 ∈ 𝑅} reaction nodes, and by the sequence of nodes in all paths starting from the starting

materials in 𝑊	and ending in 𝑠! .	

Def 6: Given a synthesis graph 𝐺 it is possible to define a set of undesirable substances and

respective substance nodes, due to their undesirable properties or unavailability. The set of

these nodes represents an input, i.e.: nodes to be eliminated 𝐺.

Def 7: A synthesis route is defined as viable if a path exists to any of its reaction nodes that i)

starts from a starting material, and ii) it does not intersect any reaction nodes that is connected

to an undesirable substance (see: Def 6). Synthesis routes that are note viable are non-viable.

Def 8: Let a reaction node 𝑟) ∈ 𝑅 represent reaction “A” in a synthesis graph 𝐺. Reaction “A”

becomes undefined if any of the substance nodes (reactant, reagent or product) connected to

𝑟) gets removed from 𝐺. Consequently, 𝑟) needs to be eliminated from 𝐺.

Observation 1: A synthesis graph 𝐺 cannot be assumed to be a directed acyclic graph (DAG)

[Ref:] as it may or may not contain cycles. In any case, it is possible to identify synthesis routes

that are directed acyclic subgraphs of 𝐺.

Observation 2: The target molecule is represented by one particular node 𝑠! ∈ 𝑆. 𝑠! is

distinguished from other nodes of 𝐺 by the properties, that there exists a path from every

𝑛 ∈ {𝑆 ∪ 𝑅} ∖ 𝑠! to 𝑠! and that deg*+,(𝑠!) = 0.

Observation 3: The target molecule 𝑠! ∈ 𝑆 only has one or more parent node(s).

Observation 4: For all parent node 𝑝 of 𝑠! ∈ 𝑆 it is true that 𝑝 ∈ 𝑅.

Observation 5: If a substance node 𝑠 ∈ 𝑆 has multiple child nodes, then it plays a role as a

reactant or a reagent in multiple reactions 𝑟", 𝑟#, . . 𝑟- ∈ 𝑅	|	𝑥 = deg&'!(𝑠). The role of 𝑠 can be

different (reactant or reagent) in the context of its child nodes.

Observation 6: If a substance node 𝑠 ∈ 𝑆 has multiple parent nodes, then it plays a role as a

product in multiple reactions 𝑟", 𝑟#, . . 𝑟- ∈ 𝑅	|	𝑥 = deg$%(𝑠).

Observation 7: In the light of Observation 1, one needs to consider the following scenario. Let’s

assume there is an 𝑠(∈ 𝑆, 𝑠(. 𝑡𝑦𝑝𝑒 = 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔	𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 substance node involved as a

starting material in a synthesis route 𝑊 involving reaction nodes 𝑟", 𝑟#, . . 𝑟$. Let’s assume, that

there is another synthesis route 𝑌 of which 𝑟"., 𝑟#. reaction nodes are constituents of, and which

also involves 𝑠(so that it is a product of 𝑟#.. Therefore, it is true that deg$%(𝑠() ≥ 1. This is a

valid synthesis scenario, that is, one can use 𝑠(as readily available starting material in 𝑊,

however, there might be another reaction route 𝑌 that involves 𝑠(as a product, i.e.: 𝑠(has a

reaction parent node. See: FigS1.

Theorem 1: Upon the removal of a reaction node 𝑟 ∈ 𝑅 from 𝐺, any parent nodes (substances)

𝑝 ∈ 𝑆 of 𝑟 will need to be eliminated from 𝐺 if, and only if deg&'!(𝑝) = 0 after the removal of

𝑟. This also holds true, if multiple reaction nodes are eliminated from 𝐺 before assessing the

deg&'!(𝑝) = 0 condition for each implicated substance nodes.

Proof: Let’s consider a substance node 𝑠/ ∈ 𝑆 and a reaction node 𝑟0 ∈ 𝑅 so that an edge exists

between them where 𝑠/ acts as the parent node, i.e.: M𝑠/, 𝑟0N ∈ 𝐸. When removing 𝑟0 from 𝐺,

only two cases can hold true.

In the first case, deg&'!M𝑠/N = 0, that is, no reaction node exists any longer in 𝐺	whose parent

node (either as reactant or reagent) would be 𝑠/. At this point, it is, however, possible that 𝑠/

participates in one or more edges 𝑒 ∈ 𝐸, where it acts as a child node. From a synthesis route

point of view, the only relevant question to ask at this point is: is there any route involving

𝑠/	that leads to the target molecule 𝑠!? It is easy to see that this is not the case, since the only

reaction node (𝑟0) whose parent node was 𝑠/, at this point was already eliminated from 𝐺.

In the second case, i.e.: deg&'!M𝑠/N ≥ 1,	regardless of how many parent nodes 𝑠/ might have, it

cannot be eliminated from 𝐺 as it has at least one child node 𝑟 ∈ {𝑅 ∖ 𝑟0}, that is on a route

that still has a chance to lead to 𝑠!. That is, 𝑠/ is either a reactant or reagent of at least one

reaction that is the constituent of an alternative synthesis route to 𝑠!. ∎

Theorem 2: Upon the removal of a reaction node 𝑟 ∈ 𝑅 from 𝐺, any child nodes (substances)

𝑐 ∈ 𝑆 of 𝑟 will need to be eliminated from 𝐺 if, and only if

deg$%(𝑐) = 0	|	𝑐. 𝑡𝑦𝑝𝑒 ≠ 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔	𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 after the removal of 𝑟. This also holds true, if

multiple reaction nodes are eliminated from 𝐺 before assessing the

deg$%(𝑐) = 0	|	𝑐. 𝑡𝑦𝑝𝑒 ≠ 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔	𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 condition for each implicated substance nodes.

Proof: This proof is derived in an analogous manner to Proof 1. Let’s consider a substance node

𝑠1 ∈ 𝑆	|	𝑠1 . 𝑡𝑦𝑝𝑒 ≠ 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔	𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 and a reaction node 𝑟0 ∈ 𝑅 so that an edge exists

between them where 𝑠1 acts as the child node, i.e.: (𝑟0 , 𝑠1) ∈ 𝐸. When removing 𝑟0 from 𝐺,

only two cases can hold true. In the first case, deg$%(𝑠1) = 0, that is, no reaction node exists

any longer in 𝐺	whose child node (as product) would be 𝑠1. At this point, it is, however, possible

that 𝑠1 participates in one or more edges 𝑒 ∈ 𝐸, where it acts as a parent node. From a

synthesis route point of view, the only relevant question to ask at this point is: is there any

route involving 𝑠1 	that leads to the target molecule 𝑠!? It is easy to see that this is not the case,

since the only reaction node (𝑟0) whose child node (product) was 𝑠1, at this point was already

eliminated from 𝐺. This means that 𝑠1 in this scenario “cannot be synthesized”. Thus, any

synthesis attempt starting from this substance is undesirable.

However, if it were true that 𝑠1 . 𝑡𝑦𝑝𝑒 = 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔	𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 then it was not required that it is

connected to a reaction as a product, so it would not be eliminated from 𝐺	even if the condition

deg$%(𝑠1) = 0	held true at any point (see: Observation 7).

In the second case, i.e.: deg$%(𝑠1) ≥ 1, regardless of how many child nodes 𝑠1 might have, it

cannot be eliminated from 𝐺 as it has at least one parent node

𝑟 ∈ {𝑅 ∖ 𝑟0}, that provides an alternative synthesis route to 𝑠1 that does not involve the same

(or other) undesirable intermedier that led to the elimination of 𝑟0 in the first place. ∎

Observation 8: In a scenario, when a substance node 𝑠1 ∈ 𝑆 has at least two parent reaction

nodes and all of these reaction nodes are eliminated from the synthesis graph, then the

assessment of the criterion whether 𝑠1 should be eliminated from 𝐺 (see: Theorem 1) is

independent of the sequence of removal of the parent reaction nodes. Furthermore, the

assessment of the criterion can happen after the simultaneous removal of more than one, or all

of the parent reaction nodes. In an analogous manner, the same observation can be made for

assessing the removal criteria (see: Theorem 2) for a substance node 𝑠/ ∈ 𝑆 if it has at least two

child reaction nodes.

Def 9: A local rule set to prune a synthesis graph 𝐺 can be established based on the above

definitions, observations and Theorem 1 and Theorem 2:

- Substances flagged as undesirable are removed from 𝐺.

- Reaction nodes are removed if they were immediate neighbors of a substance node

before its deletion from 𝐺, as the implicated reaction became undefined (see: Def 8).

- A substance node 𝑠 ∈ 𝑆	is deleted from 𝐺 if the deg&'!(𝑠) = 0 elimination criterion

becomes true upon the deletion of one or more of its child reaction node(s) {𝑟 ∈ 𝑅}

(see: Theorem 1).

- A substance node 𝑠 ∈ 𝑆	is deleted from 𝐺 if the deg$%(𝑠) = 0 elimination criterion

becomes true upon the deletion of one or more of its parent reaction node(s) {𝑟 ∈ 𝑅} ,

unless 𝑠 is a starting material (see: Theorem 2).

Theorem 3: Let’s consider a synthesis graph 𝐺, and one of its viable synthesis routes 𝑊 (see:

Def 7), that involves a succession of reaction nodes 𝑟", 	𝑟#, 𝑟2, . ., 𝑟$, where 𝑟" is connected to

one or more {𝑠(|	∀𝑠(: 𝑠(. 𝑡𝑦𝑝𝑒 = 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔	𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙	}	starting materials, and 𝑟$ is the parent

node of target molecule 𝑠!. Let’s assume that two reaction nodes 𝑟# an 𝑟2 are separated by a

substance node 𝑠 ≠ 𝑠! , so that 𝑟# is the parent node of 𝑠, whereas 𝑟2is the child node of 𝑠.	

Furthermore, 𝑠 is connected to a reaction node 𝑟. ∉ 𝑊	that is not part of the synthesis route

𝑊. In this case, it holds true, that the elimination of 𝑟. from 𝐺 will leave the viable synthesis

route 𝑊 intact. That is, all reaction nodes in 𝑊 and their associated substance nodes will not be

removed form 𝐺.

Proof:

In the relation of 𝑟#, 𝑟2, 𝑠 and 𝑟′ four distinct cases exist. Since no other cases are possible,

conclusions drawn from these cases generalize to any 𝐺. Here, we consider the four possible

cases.

Case 1: 𝑠	|	𝑠. 𝑡𝑦𝑝𝑒 ≠ 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔	𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 is the child node of 𝑟# and the parent node of 𝑟2 and 𝑟′

is the parent node of 𝑠, see: Fig S2.

Once 𝑟′ is eliminated from 𝐺, we need to assess whether 𝑠, a child node of 𝑟′ needs to be

eliminated as well. According to Theorem 2, 𝑠 needed to be eliminated if the condition

deg34(𝑠) = 0	|	𝑠. 𝑡𝑦𝑝𝑒 ≠ 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔	𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 held true. Considering that 𝑠	is a child node of 𝑟#,

which is not affected by the deletion of 𝑟′, the above condition does not hold true. Therefore, 𝑠

does not need to be eliminated from 𝐺, leaving 𝑊 intact.

Case 2: 𝑠	|	𝑠. 𝑡𝑦𝑝𝑒 ≠ 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔	𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 is the child node of 𝑟# and the parent node of 𝑟2 and 𝑟′

is the child node of 𝑠, see: Fig S3.

Once 𝑟′ is eliminated from 𝐺, we need to assess whether 𝑠, a parent node of 𝑟′ needs to be

eliminated as well. According to Theorem 1, if deg*+,(𝑠) = 0 holds true, then 𝑠	would need to

be eliminated. Considering that 𝑠	is a parent node of 𝑟2, which is not affected by the deletion of

𝑟′, the above condition does not hold. Therefore, 𝑠	does not need to be eliminated, leaving 𝑊

intact.

Case 3: 𝑠	|	𝑠. 𝑡𝑦𝑝𝑒 = 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔	𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 is the parent node of 𝑟#, and 𝑟′ is the parent node of 𝑠,

see: Fig S4.

Since 𝑠 is the child node of 𝑟′, upon the removal of 𝑟′, we need to assess, if the elimination

criterion according to Theorem 2 holds true for 𝑠. The removal of 𝑟′ will lead to the condition of

deg$%(𝑠) = 0 being true, however, 𝑠 is a starting material. Therefore, overall elimination

criterion does not hold true. Consequently, 𝑠 does not need to be removed from 𝐺, leaving 𝑊

intact.

Case 4: 𝑠	|	𝑠. 𝑡𝑦𝑝𝑒 = 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔	𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 is the parent node of 𝑟# and 𝑟′ is the child node of 𝑠,

see: Fig S5.

It can be seen, that in an analogous manner to case 2, 𝑠 does not need to be eliminated from 𝐺,

as deg*+,(𝑠) = 0 will not hold true despite the deletion 𝑟′, leaving 𝑊 intact.

We could consider two additional, only hypothetical cases. However, in the light of the

conditions set forth in this theorem, we show that these two cases lead to contradiction.

Hypothetical case 1: 𝑠	|	𝑠. 𝑡𝑦𝑝𝑒 ≠ 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔	𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 is a parent node of 𝑟#, and 𝑟′ is a parent

node of 𝑠, and 𝑠 has no other neighbors. See: Fig S6.

The elimination of 𝑟’ would lead to this condition being true: deg$%(𝑠) = 0. Considering that

𝑠	is not a starting material, the elimination condition for 𝑠 according to Theorem 2 would hold

true. However, this leads to a contradiction. Namely, 𝑊 is not a viable synthesis route (see:

Def 7), and 𝑟′ would be actually a constituent of 𝑊.

Hypothetical case 2: 𝑠	|	𝑠. 𝑡𝑦𝑝𝑒 ≠ 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔	𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 is a parent node of 𝑟#, and 𝑟′ is a parent

node of 𝑠, and there exist another reaction node 𝑟- that is the parent node of 𝑠, but 𝑟- is not

part of 𝑊. Furthermore, 𝑠 has no other neighbors. See: Fig S7.

Upon removal of 𝑟′ the elimination criterion, according to Theorem 2, for 𝑠 would not hold true,

as it has an additional parent node, 𝑟-. Therefore, after the elimination of 𝑟′, deg$%(𝑠) = 1,

rendering the elimination criterion false. However, this scenario would mean that 𝑟- must be

the part of 𝑊, which leads to a contradiction. Namely, according to the hypothetical case 2, 𝑟-

is not a constituent of 𝑊.

Taking all the above cases into consideration, we conclude, that the elimination of a reaction

node 𝑟′ will leave a viable synthesis route 𝑊 intact, as long as 𝑟′ is not a constituent of 𝑊. ∎

Theorem 4: Given a valid synthesis route 𝑊 in a synthesis graph 𝐺, if two of the constituent

substance nodes (𝑠" and 𝑠#) of 𝑊 are connected by a subgraph 𝑌 that is not part of 𝑊, then the

deletion of that subgraph will leave 𝑊 intact.

Proof: The fact that 𝑠" and 𝑠# are connected by 𝑌	implies that there exists a sequence of nodes

that constitutes a path 𝑃 between 𝑠" and 𝑠#, if we ignore the directed nature of 𝐺, and assume

that all edges are undirected. For clarification 𝑠" and 𝑠# are not part of 𝑃. However, the

terminal nodes of 𝑃 are reaction nodes, since 𝐺 is a bipartite graph. As it was shown in the

proof of Theorem 3, in the relation of a substance node 𝑠 ∈ 𝑊	and a reaction node 𝑟. ∉ 𝑊	 the

removal of 𝑟. requires the assessment of the properties of only the substance node 𝑠 in order

to decide whether 𝑠 would need to be eliminated as well. Therefore, deletion of 𝑃 reduces to

assessing the elimination criteria for both 𝑠" and 𝑠# independently, according to Theorem 1 and

Theorem 2. Of course, for the assessment of the criteria, we need to consider the original

directed edges between 𝑠", 𝑠# and the two terminal reaction nodes. Therefore, it can be seen in

an analogous manner as in the proof of Theorem 3, that 𝑊 is left intact upon the deletion of

the subgraph 𝑌 which 𝑃 was the constituent of. ∎

Theorem 5: The local rule set outlined in Def 9 is alone sufficient to serve as the decision-

making mechanism of an algorithm that will prune a synthesis graph 𝐺 with a target molecule

𝑠! , 𝑠! . 𝑡𝑦𝑝𝑒 = 𝑡𝑎𝑟𝑔𝑒𝑡	𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒 in a specific manner: taking a set of substance nodes 𝐼 =

{∀𝑠$ ∈ 𝑆	|	𝐼 ≠ 𝑆, 𝑠$ ≠ 𝑠!} and 𝐺 as input, i) it will completely remove all synthesis routes

involving a node 𝑛 ∈ 𝐼 starting from the starting materials of the synthesis routes, and ii) it will

not affect viable synthesis routes (see: Def 7) which represent synthesis alternatives, i.e. they

don’t involve any of the undesirable substances defined by the input set.

Proof: Let a synthesis graph 𝐺 consist of a set of substances nodes 𝑆	and of a set of reaction

nodes 𝑅. The set of input nodes 𝐼 = {∀𝑠$ ∈ 𝑆} consist only of substance nodes. The elimination

of these nodes gives rise to a set of reaction nodes 𝑅" = {∀𝑟" ∈ 𝑅} which, in turn, also needs to

be eliminated from 𝐺, as all reaction of 𝑅" has become undefined (see: Def 8). In consequence

of the removal of the reaction nodes in 𝑅", a set of substance nodes 𝑆" = {∀𝑠" ∈ 𝑆} emerges.

Nodes in 𝑆" were connected to at least one of reactions nodes in 𝑅" before their removal.

Therefore, we need to assess the removal criteria for each s" ∈ 	 S" as described by the local

rule set (see: Def 9). In the light of Observation 8, all nodes in 𝑅"	can be eliminated from 𝐺

before assessing the elimination criteria according to the local rule set for nodes in 𝑆".

Let 𝑆"0 ⊆ 𝑆" denote a subset of nodes of 𝑆", that end up being eliminated from 𝐺 based on the

local rule set. Unless 𝐺 has become empty at this point, then another set of reaction nodes

(𝑅# = {∀𝑟# ∈ {𝑅 ∖ 𝑅"}} emerges, that have become undefined upon the removal of 𝑆"0,

provided that 𝑆"0 ≠ ∅. Elimination of the reaction nodes in 𝑅#	give rise to a set of substance

nodes 𝑆# = {∀𝑠# ∈ {𝑆\𝑆"0}} which are also candidates for elimination in the light of the local

rule set. Repeating this process gives rise to pairs of (𝑅- , 𝑆-)	|	𝑥 ∈ ℕ	, until no substance node

in 𝑆- is eliminated or 𝐺 becomes empty. So far, we proved that the process of iteratively

removing nodes from 𝐺 based on the input set 𝐼 and the local rule set will terminate in a

deterministic manner. We also proved in Theorem 3 and Theorem 4 that the elimination of the

input substance nodes, and subsequently all the other reaction nodes from a set 𝑅-, and any

substance nodes in the corresponding set 𝑆- will leave all viable synthesis routes intact.

Consequently, the elimination process will only remove substance and reaction nodes that are

not involved in any viable synthesis routes. Therefore, all non-viable synthesis routes will be

eliminated completely once the iterative elimination process terminates. ∎

Pseudo Code of the SGP Algorithm

Algorithm SGP

Input: synthesis graph G
Input: set of undesirable substances lo_substances

function flagNodes (neighbors = [], target_list = [])

 for all neighbor in neighbors do
 if neighbor not in target_list then
 target_list.add (neighbor)
 end if
 end for

return (target_list)

function markNodeForDeletion (node, nodes_2b_deleted = [])

 if node not in nodes_2b_deleted then
 nodes_2b_deleted.add(node)
 end if

return (nodes_2b_deleted)

function SGP (G, lo_substances = [])

Variable: list of nodes n_idel
 Variable: list of nodes n_sdel_p
 Variable: list of nodes n_sdel_c
 Variable: list of nodes deleted_nodes
 Variable: node n_i
 Variable: node n_s

 n_idel.merge (lo_substances)

 while (not n_idel.empty() or not n_sdel_p.empty() or not n_sdel_c.empty()) do

 while not n_idel.empty() do

 n_i = n_idel.pop()

 if n_i in G.nodes then

 parent_neighbors = get_parent_nodes (G, n_i)
 child_neighbors = get_child_nodes (G, n_i)

 if n_i.attribute('node_type') == 'Substance' then

 n_idel = flagNodes (parent_neighbors, n_idel)
 n_idel = flagNodes (child_neighbors, n_idel)

 else

 n_sdel_p = flagNodes (parent_neighbors, n_sdel_p)
 n_sdel_c = flagNodes (child_neighbors, n_sdel_c)

end if

 G.remove_node(n_i)

end if

 end while

 while not n_sdel_p.empty() do
 n_s = n_sdel_p.pop()

 if get_out_degree(G, n_s) == 0:
 n_idel = markNodeForDeletion (n_s, n_idel)
 end while

 while not n_sdel_c.empty() do
 n_s = n_sdel_c.pop()

 if (get_in_degree(G, n_s) == 0 and n_s.attribute('srole') != 'SM') then
 n_idel = markNodeForDeletion (n_s, n_idel)

 end if

 end while

 end while

return (G)

G = SGP (G, lo_substances)

Time Complexity Analysis of the SGP Algorithm

Here, we present the computational time-complexity of the SGP algorithm considering worst

case scenarios.

Let’s consider a synthesis graph 𝐺 consisting of 𝑆 substance, and 𝑅 reaction nodes, i.e.: 𝐺 has

𝑍 = 𝑆 + 𝑅 nodes in total. Furthermore, let 𝐼 denote the input set of undesirable substances.

The adjacency information of nodes are stored in an adjacency list format 5. That is, each node

of 𝐺 is associated with two lists which contain the child and parent nodes of a particular node,

respectively. Also, the number of child and parent nodes, i.e.: the size of the respective

adjacency lists, of each node is maintained as node attributes.

At the initial phase (Step 1 in Fig 1) of the SGP algorithm all the neighbors of the substances in

the input set 𝐼 need to be eliminated. Although unrealistic, all substances of 𝐺 could be

included in 𝐼. Therefore, the identification of reaction nodes to be marked for deletion might

require a maximum of 𝑆 × 𝑅 steps. This can be approximated by 𝑍# steps.

In Step 2, a maximal of 𝑆 are eliminated, which requires updating the adjacency lists of each

reaction nodes. This requires a maximum of 𝑅 × 𝑆 steps, which can be estimated as 𝑍#. Also,

we need to remove 2 × 𝑆 adjacency lists associates with the deleted substance nodes, which

can be approximated by 2𝑍 steps.

Next, the neighbors of each reaction nodes marked for deletion are identified in Step 3. This

can be approximated with 𝑍# steps.

In step 4, the elimination of the marked reaction nodes requires 𝑍# + 2𝑍 steps in order to

update and remove the respective adjacency lists. The inspection of any substance nodes

potentially marked for inspection requires 2𝑆 steps, as the in-degree and out-degree 4

properties are node attributes that can be looked-up. This process can be approximated by 2𝑍

steps.

It can be seen that computational time requirements after the Step 4 can be estimated by

repeating the above analysis at most (𝑍 − 2)/2 times, considering that in each iteration at least

one reaction and one substance node need to be removed for the iteration to continue.

Therefore, the computational complexity of the SGP algorithm can be estimated according to

Eq 1.

𝑂 = 𝑍# +	5
#
(3𝑍# + 6𝑍) = 4𝑍# + 2

#
𝑍2 ≈ 𝑍2 (1)

Therefore, the computational time complexity of the SGP algorithm is bounded by the cubic

function of the total number of nodes in the synthesis graph at hand. A tighter bound of this for

the computational complexity is likely to be found, however, the more in-depth analysis is

outside of the scope of this study. Furthermore, it might be possible to find points of

optimization of the SGP algorithm which might result in more efficient computational time

complexity. However, given the current state-of-the-art, typical synthesis graphs are

anticipated to be comprised of nodes in the magnitude of thousands. Therefore, the SGP

algorithm is expected to process a typical synthesis graph in reasonable runtime 6.

 Figures

Fig S1. Observation 7. Reaction nodes are represented by squares, whereas substance nodes by circles. Nodes and

edges drawn with dotted lines indicate that such nodes and edges may or may not exist. Nodes with purple outline

indicate starting materials.

Fig S2. Theorem 3, case 1. Reaction nodes are represented by squares, whereas substance nodes by circles. Nodes

and edges drawn with dotted lines indicate that such nodes and edges may or may not exist in the synthesis route

𝑊.

Fig S3. Theorem 3, case 2. Reaction nodes are represented by squares, whereas substance nodes by circles. Nodes

and edges drawn with dotted lines indicate that such nodes and edges may or may not exist in the synthesis route

𝑊.

Fig S4. Theorem 3, case 3. Reaction nodes are represented by squares, whereas substance nodes by circles. Nodes

and edges drawn with dotted lines indicate that such nodes and edges may or may not exist in the synthesis route

𝑊. Nodes representing starting materials are highlighted by purple.

Fig S5. Theorem 3, case 4. Reaction nodes are represented by squares, whereas substance nodes by circles. Nodes

and edges drawn with dotted lines indicate that such nodes and edges may or may not exist in the synthesis route

𝑊. Nodes representing starting materials are highlighted by purple.

Fig S6. Theorem 3, hypothetical case 1. Reaction nodes are represented by squares, whereas substance nodes by

circles. Nodes and edges drawn with dotted lines indicate that such nodes and edges may or may not exist in the

synthesis route 𝑊. Nodes representing starting materials are highlighted by purple.

Fig S7. Theorem 3, hypothetical case 2. Reaction nodes are represented by squares, whereas substance nodes by

circles. Nodes and edges drawn with dotted lines indicate that such nodes and edges may or may not exist in the

synthesis route 𝑊. Nodes representing starting materials are highlighted by purple.

Fig S8. Case 8. Reaction nodes are represented by squares, whereas substance nodes by circles. Color code of

substance nodes; green: target molecule, yellow: starting material, magenta outline: undesirable substance, white:

intermediate. Note, the labels of nodes are preserved across Case 6, 7 and 8, only an additional substance was

given the label “P” in Case 8 as compared to Case 6 and 7. A: Original synthesis graph. Substances “E”, “F”, “P” are

intermediates and were marked as undesirable substances. B: Pruned synthesis graph.

Fig S9. Case 9. Reaction nodes are represented by squares, whereas substance nodes by circles. Color code of

substance nodes; green: target molecule, yellow: starting material, magenta outline: undesirable substance, white:

intermediate. Note, the labels of nodes are preserved across Case 6, 7, 8 and 9, only two additional substance

were given the label “Q” and “R” in Case 9 as compared to Case 8. A: Original synthesis graph. Substances “E”, “F”,

“P” are intermediates and were marked as undesirable substances. Substances “Q” and “R” are starting materials

and were also marked as undesirable substances. B: Pruned synthesis graph.

Tables

InChI-Key7 SMILES8,9 IUPAC Name10,11 ID

BMDNOIHVFOBSAS-UHFFFAOYSA-N
[O-][N+](c(cc1)ccc1NC(C=Cc1cccc([N+]([O-

])=O)c1)=O)=O

3-(3-nitrophenyl)-N-(4-nitrophenyl)prop-2-

enamide 1

AZURFBCEYQYATI-UHFFFAOYSA-N O=C(CCl)Nc1ccc([N+](=O)[O-])cc1 2-chloro-N-(4-nitrophenyl)acetamide 2

ZETIVVHRRQLWFW-UHFFFAOYSA-N O=Cc1cccc([N+](=O)[O-])c1 3-nitrobenzaldehyde 3
WWXMVRYHLZMQIG-UHFFFAOYSA-N O=C(O)C=Cc1cccc([N+](=O)[O-])c1 3-(3-nitrophenyl)prop-2-enoic acid 4

TYMLOMAKGOJONV-UHFFFAOYSA-N Nc1ccc([N+](=O)[O-])cc1 4-nitroaniline 5

NSFJAFZHYOAMHL-UHFFFAOYSA-N O=[N+]([O-])c1ccc(B(O)O)cc1 (4-nitrophenyl)boronic acid 6
VXIVSQZSERGHQP-UHFFFAOYSA-N NC(=O)CCl 2-chloroacetamide 7

BNWCETAHAJSBFG-UHFFFAOYSA-N CC(C)(C)OC(=O)CBr tert-butyl 2-bromoacetate 8
KDPAWGWELVVRCH-UHFFFAOYSA-N O=C(O)CBr 2-bromoacetic acid 9
FOCAUTSVDIKZOP-UHFFFAOYSA-N O=C(O)CCl 2-chloroacetic acid 10

ZNRGSYUVFVNSAW-UHFFFAOYSA-N O=[N+]([O-])c1cccc(B(O)O)c1 (3-nitrophenyl)boronic acid 11
POAWTYXNXPEWCO-UHFFFAOYSA-N O=C(O)C=CBr 3-bromoprop-2-enoic acid 12

JDNTWHVOXJZDSN-UHFFFAOYSA-N O=C(O)CI 2-iodoacetic acid 13
LFKDJXLFVYVEFG-UHFFFAOYSA-N CC(C)(C)OC(N)=O tert-butyl carbamate 14

Table S1. Substances involved in use cases. Substance nodes in the graphs of the use cases are numbered in

correspondence to the IDs shown in this table.

References

(1) Shibukawa, R.; Ishida, S.; Yoshizoe, K.; Wasa, K.; Takasu, K.; Okuno, Y.; Terayama, K.;

Tsuda, K. CompRet: A Comprehensive Recommendation Framework for Chemical

Synthesis Planning with Algorithmic Enumeration. J. Cheminform. 2020, 12 (1), 52.

https://doi.org/10.1186/s13321-020-00452-5.

(2) Bradshaw, J.; Paige, B.; Kusner, M.; Segler, M.; Hernández-Lobato, J. M. Barking up the

Right Tree: An Approach to Search over Molecule Synthesis {DAGs}. In Advances in

Neural Information Processing Systems 33; Curran Associates, Inc., 2020; pp 6852–6866.

(3) Pavlopoulos, G. A.; Kontou, P. I.; Pavlopoulou, A.; Bouyioukos, C.; Markou, E.; Bagos, P. G.

Bipartite Graphs in Systems Biology and Medicine: A Survey of Methods and

Applications. Gigascience 2018, 7 (4). https://doi.org/10.1093/gigascience/giy014.

(4) Batool, K.; Niazi, M. A. Towards a Methodology for Validation of Centrality Measures in

Complex Networks. PLoS One 2014, 9 (4), e90283.

https://doi.org/10.1371/journal.pone.0090283.

(5) Coimbra, M. E.; Francisco, A. P.; Veiga, L. An Analysis of the Graph Processing Landscape.

J. Big Data 2021, 8 (1), 55. https://doi.org/10.1186/s40537-021-00443-9.

(6) Genheden, S.; Engkvist, O.; Bjerrum, E. Clustering of Synthetic Routes Using Tree Edit

Distance. J. Chem. Inf. Model. 2021, 61 (8), 3899–3907.

https://doi.org/10.1021/acs.jcim.1c00232.

(7) Heller, S.; McNaught, A.; Stein, S.; Tchekhovskoi, D.; Pletnev, I. InChI - the Worldwide

Chemical Structure Identifier Standard. J. Cheminform. 2013, 5 (1), 7.

https://doi.org/10.1186/1758-2946-5-7.

(8) Weininger, D. SMILES, a Chemical Language and Information System. 1. Introduction to

Methodology and Encoding Rules. J. Chem. Inf. Model. 1988, 28 (1), 31–36.

https://doi.org/10.1021/ci00057a005.

(9) Weininger, D.; Weininger, A.; Weininger, J. L. SMILES. 2. Algorithm for Generation of

Unique SMILES Notation. J. Chem. Inf. Model. 1989, 29 (2), 97–101.

https://doi.org/10.1021/ci00062a008.

(10) INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY (IUPAC) - Nomenclature

https://iupac.org/what-we-do/nomenclature/.

(11) ChemAxon Ltd., Marvin Suite. IUPAC Names of Molecules Were Generated with

ChemAxon’s MarvinSketch 16.12.12.

