Supplementary Material

1 Supplementary Figures and Tables

Supplementary Figure 1. Dissected alimentary tract from a neonate (A) and (B) a third instar Japanese beetle (*Popillia japonica* Newman) larvae. Alimentary tract from neonates were used entirely while alimentary tract from third instar larvae were divided into midgut (between the first set of gastric caeca after the head and the pyloric sphincter where the Malpighian tubules emerge) and hindgut (including ileum, colon, and rectum) sections.

Supplementary Figure 2. Rarefaction curves for α -diversity metrics of prokaryotic communities in guts from third instar Japanese beetle (*Popillia japonica* Newman) larvae and associated soil, at a depth of 11,781 sequences. (A) Observed amplicon sequence variants (ASVs), (B) Shannon diversity, (C) Faith's phylogenetic diversity. Line color represents sample type (gut region or soil). Individual samples are represented by thin lines while average per sample type are represented by thick lines.

Supplementary Figure 3. Distribution (percentage) of unique and shared observed amplicon sequence variants (ASVs) of the archaeal, bacterial and combined prokaryotic community within compartment: soil (A), and midgut (B) and hindgut (C) of third instar Japanese beetle (*Popillia japonica* Newman) larvae across locations. Shared ASVs (D) represents an overview of the distribution (percentage) of ASVs that are shared between two or three (all) compartments. Central larger chart represents the average ASVs across all locations. Smaller charts represent average ASVs per location as follows (left to right), in top row: Blackhawk, Culver, Janesville1, and Janesville2, and in bottom row: Nursery, Purdy, and TPAC. The cases where a smaller chart is not presented means that ASVs were not detected in that compartment/comparison at the location.

Supplementary Figure 4. Prokaryotic community based on V4 16S rRNA gene sequences at the order rank in gut (i.e., midgut, hindgut) from third instar larvae of the Japanese beetle (*Popillia japonica* Newman) and associated soil, at seven locations across Indiana and Wisconsin, USA. All taxa belong to *Bacteria* except to *Nitrososphaerales* and *Methanobacteriales* that belong to *Archaea*. Taxa with ASVs \geq 0.016% in abundance were considered. The dendrogram is based on Euclidean dissimilarities between taxa. Average is presented, n=3 for each compartment at each location. For taxonomic affiliation at order rank refer to **Supplementary Table 3**.

Supplementary Figure 5. Microbial compositional profiles of prokaryotic communities in midgut and hindgut of third instar Japanese beetle (*Popillia japonica* Newman) larvae and associated soil visualized using the principal coordinate analysis (PCoA) based on (A) Jaccard-, (B) Bray-Curtis-, (C) Unweighted UniFrac-, and (D) Weighted UniFrac dissimilarity matrices. Data points represent individual samples where symbol color denotes compartment (i.e., midgut, hindgut, or soil) while symbol shape denotes location.

	Raw sequences	Filtered and denoised (DADA2)	Merged	Non-chimeric	Filtering based on >2, >p, nmnc*			
First instar	$129,020 \pm 60,928$	$123,366 \pm 58,408$	$119,623 \pm 55,525$	$114,977 \pm 52,326$	$106,348 \pm 49,771$			
Janesville	157,560 ± 45,011	150,458 ± 43,240	144,671 ± 39,708	138,876 ± 38,325	$122,641 \pm 41,543$			
TPAC	$100,480 \pm 65,499$	96,275 ± 63,018	94,576 ± 61,577	$91,078 \pm 57,129$	$90,056 \pm 56,429$			
Total	1,290,197	1,233,663	1,196,234	1,149,772	1,063,481			
Soil	1,392,495 ± 35,222	1,340,202 ± 33,953	1,044,949 ± 28,311	1,034,937 ± 28,016	973,411 ± 25,544			
Blackhawk	134,338 ± 12,416	$129,145 \pm 11,925$	$100,949 \pm 10,563$	$100,446 \pm 10,463$	96,187 ± 9,561			
Culver	136,652 ± 7,996	$131,393 \pm 7,727$	$97,518 \pm 5,804$	96,471 ± 5,758	92,394 ± 5,446			
Janesville1	$151,081 \pm 17,118$	$144,982 \pm 16,425$	$109,459 \pm 13,143$	$108,075 \pm 12,937$	$103,631 \pm 12,148$			
Janesville2	170,905 ± 28,866	$164,409 \pm 27,642$	$125,351 \pm 22,537$	124,344 ± 22,265	119,028 ± 20,731			
Nursery	139,828 ± 27,826	$134,643 \pm 26,754$	$101,971 \pm 21,310$	$101,003 \pm 21,054$	94,461 ± 19,203			
Purdy	$337,849 \pm 40,889$	$326,078 \pm 39,372$	$263,046 \pm 33,750$	260,442 ± 33,439	244,827 ± 30,424			
TPAC	321,842 ± 21,079	$309,552 \pm 20,328$	246,655 ± 17,036	$244,156 \pm 16,950$	222,883 ± 14,828			
Midgut	1,967,400 ± 33,350	1,897,148 ± 32,216	1,735,308 ± 28,012	$1,712,549 \pm 27,576$	1,524,972 ± 27,507			
Blackhawk	306,525 ± 18,011	294,899 ± 17,219	280,535 ± 15,610	277,163 ± 15,982	262,166 ± 18,313			
Culver	307,283 ± 32,489	$296,168 \pm 31,796$	262,339 ± 28,234	$258,648 \pm 27,905$	$208,132 \pm 23,098$			
Janesville1	$270,936 \pm 40,640$	261,758 ± 39,021	238,114 ± 32,697	$234,161 \pm 32,408$	223,857 ± 29,879			
Janesville2	$362,008 \pm 29,827$	349,464 ± 29,229	313,901 ± 26,535	$309,146 \pm 25,917$	298,798 ± 25,653			
Nursery	325,813 ± 7,981	313,611 ± 7,561	$286,940 \pm 5,376$	282,613 ± 4,912	249,585 ± 2,991			
Purdy	268,530 ± 33,353	259,521 ± 32,332	233,973 ± 26,976	$232,081 \pm 26,802$	$168,835 \pm 31,325$			
TPAC	126,305 ± 18,477	121,727 ± 17,677	119,506 ± 16,961	$118,737 \pm 16,633$	113,599 ± 18,325			
Hindgut	2,030,261 ± 33,947	1,952,179 ± 32,718	1,771,213 ± 30,454	1,760,927 ± 30,214	1,711,363 ± 29,260			
Blackhawk	381,377 ± 19,597	$366,796 \pm 19,047$	$335,318 \pm 18,482$	333,820 ± 18,224	327,428 ± 17,838			
Culver	210,721 ± 36,657	$203,900 \pm 36,047$	186,581 ± 34,215	$185,455 \pm 33,969$	178,363 ± 33,031			
Janesville1	308,466 ± 21,861	$296,541 \pm 21,520$	$271,187 \pm 21,845$	$269,520 \pm 21,308$	$260,446 \pm 18,445$			
Janesville2	333,289 ± 23,887	319,211 ± 23,051	284,944 ± 21,846	284,307 ± 21,824	276,631 ± 19,942			
Nursery	370,986 ± 23,993	356,022 ± 23,098	321,129 ± 21,526	318,670 ± 21,554	307,611 ± 20,159			
Purdy	151,478 ± 11,652	$145,404 \pm 11,107$	$128,729 \pm 11,177$	128,387 ± 11,202	124,472 ± 10,948			
TPAC	273,944 ± 29,896	$264,305 \pm 29,090$	243,325 ± 27,691	$240,768 \pm 27,110$	236,412 ± 26,879			
Total	5,390,156	5,189,529	4,551,470	4,508,413	4,209,746			

Supplementary Table 1. 16S rRNA gene reads recovered from Illumina MiSeq sequencing in the whole gut of first instar hatched under sterile conditions, and the midgut and hindgut regions of third instar Japanese beetle (*Popillia japonica* Newman) larvae and associated soil. For each compartment at each location, average \pm SD are presented, n=3, except for first instar whole guts, where n=5.

*: >2: present in at least 2 samples; >p: assigned at least to the phylum rank of taxonomy classification; nmnc: were not classified as mitochondrial or chloroplast.

Supplementary Table 2. Number of observed amplicon sequence variants (ASVs) including taxonomic affiliation at different ranks, present in the prokaryotic community from midgut and hindgut of third instar Japanese beetle (*Popillia japonica* Newman) larvae and associated soil. Taxa for unrarefied and rarefied libraries are presented.

			Phy	lum	Or	der	Spe	cies	AS	Vs
			Archaea	Bacteria	Archaea	Bacteria	Archaea	Bacteria	Archaea	Bacteria
		ALL	3	34	4	355	15	1,885	37	8,381
	Total	Soil	3	34	4	338	13	1,616	34	5,385
	Total	Midgut	2	27	2	248	9	1,349	26	4,274
uo		Hindgut	2	17	2	99	6	437	ASVs eria Archaea Back 885 37 616 34 349 26 349 26 437 11 471 10 104 1 53 1 260 9 873 15 12 0 112 1 877 37 589 33 293 25 400 9 516 11 118 2 58 1 220 7 843 15 10 0 112 1 99.6 100.0 98.3 97.1 97.1 97.1	2,762
acti		Soil	1	7	2	105	5	471	10	2,530
refa	Unique	Midgut	0	0	0	11	1	104	1	653
ra.		Hindgut	0	0	0	1	1	53	1	1,513
No		ALL	2	17	2	92	5	260	9	355
Share	Sharad	Soil & Midgut	0	10	0	140	3	873	15	2,436
	Shared	Soil & Hindgut	0	0	0	1	0	12	0	64
		Midgut & Hindgut	0	0	0	5	0	112	1	830
		ALL	3	34	4	355	15	1,877	37	8,333
	Tatal	Soil	3	33	4	334	13	1,589	33	5,294
781	Total	Midgut	2	24	2	236	9	1,293	25	4,026
1,7		Hindgut	2	15	2	87	5	400	9	2,676
at]		Soil	1	10	2	117	5	516	11	2,678
uo	Unique	Midgut	0	0	0	14	1	118	2	716
icti		Hindgut	0	0	0	2	1	58	1	1,580
efa		ALL	2	14	2	80	4	220	7	304
Raı	Sharad	Soil & Midgut	0	9	0	137	4	843	15	2,263
	Shared	Soil & Hindgut	0	0	0	0	0	10	0	49
		Midgut & Hindgut	0	1	0	5	0	112	1	743
Day	fa ati an	ALL	100.0	100.0	100.0	100.0	100.0	99.6	100.0	99.4
Kai	vorage	Soil	100.0	97.1	100.0	98.8	100.0	98.3	97.1	98.3
coverage (%)		Midgut	100.0	88.9	100.0	95.2	100.0	95.8	96.2	94.2
		Hindgut	100.0	88.2	100.0	87.9	83.3	91.5	81.8	96.9

Supplementary Table 3. Taxonomic affiliation (SILVA v132) of prokaryotic community (up to order rank when available) in gut (i.e., midgut, hindgut) from third instar larvae of the Japanese beetle (*Popillia japonica* Newman) and associated soil.

Label in heatmap	Kingdom	Phylum	Class	Order
11-24	Bacteria	Acidobacteria	Blastocatellia (Subgroup	11-24
			4)	
Acetobacterales	Bacteria	Proteobacteria	Alphaproteobacteria	Acetobacterales
Acidobacteria	Bacteria	Actinobacteria		
Acidobacteriales	Bacteria	Acidobacteria	Acidobacteriia	Acidobacteriales
Actinomarinales	Bacteria	Actinobacteria	Acidimicrobiia	Actinomarinales
Alphaproteobacteria_	Bacteria	Proteobacteria	Alphaproteobacteria	uncultured
Anaeromyxobacter	Bacteria	Acidobacteria	Subgroup 6	uncultured
				Anaeromyxobacter sp.
Azospirillales	Bacteria	Proteobacteria	Alphaproteobacteria	Azospirillales
Bacillales	Bacteria	Firmicutes	Bacilli	Bacillales
Bacteroidales	Bacteria	Bacteroidetes	Bacteroidia	Bacteroidales
Bacteroidia	Bacteria	Bacteroidetes	Bacteroidia	
Betaproteobacteriales	Bacteria	Proteobacteria	Gammaproteobacteria	Betaproteobacteriales
Blastocatellales	Bacteria	Acidobacteria	Blastocatellia (Subgroup	Blastocatellales
			4)	
BRC1	Bacteria	BRC1	uncultured Acidobacteria	uncultured Acidobacteria
			bacterium	bacterium
BRH-c20a_	Bacteria	Firmicutes	BRH-c20a	uncultured bacterium
Caulobacterales	Bacteria	Proteobacteria	Alphaproteobacteria	Caulobacterales
Cellvibrionales	Bacteria	Proteobacteria	Gammaproteobacteria	Cellvibrionales
Chitinophagales	Bacteria	Bacteroidetes	Bacteroidia	Chitinophagales
Chthoniobacterales	Bacteria	Verrucomicrobia	Verrucomicrobiae	Chthoniobacterales
Clostridia	Bacteria	Firmicutes	Clostridia	
Clostridiales	Bacteria	Firmicutes	Clostridia	Clostridiales
Corynebacteriales	Bacteria	Actinobacteria	Actinobacteria	Corynebacteriales
Cytophagales	Bacteria	Bacteroidetes	Bacteroidia	Cytophagales
Deferribacterales	Bacteria	Deferribacteres	Deferribacteres	Deferribacterales
Deltaproteobacteria	Bacteria	Proteobacteria	Deltaproteobacteria	
Desulfarculales	Bacteria	Proteobacteria	Deltaproteobacteria	Desulfarculales
Desulfovibrionales	Bacteria	Proteobacteria	Deltaproteobacteria	Desulfovibrionales
Desulfuromonadales	Bacteria	Proteobacteria	Deltaproteobacteria	Desulfuromonadales
Dongiales	Bacteria	Proteobacteria	Alphaproteobacteria	Dongiales
DS-100	Bacteria	Acidobacteria	<i>Blastocatellia (Subgroup</i> <i>4)</i>	DS-100
Enterobacteriales	Bacteria	Proteobacteria	Gammaproteobacteria	Enterobacteriales
Erysipelotrichales	Bacteria	Firmicutes	Erysipelotrichia	Erysipelotrichales
Fibrobacterales	Bacteria	Fibrobacteres	Fibrobacteria	Fibrobacterales
Firmicutes	Bacteria	Firmicutes		
Flavobacteriales	Bacteria	Bacteroidetes	Bacteroidia	Flavobacteriales
Frankiales	Bacteria	Actinobacteria	Actinobacteria	Frankiales
Gaiellales	Bacteria	Actinobacteria	Thermoleophilia	Gaiellales
Gammaproteobacteria	Bacteria	Proteobacteria	Gammaproteobacteria	Gammaproteobacteria
			_	Incertae Sedis
Gastranaerophilales	Bacteria	Cyanobacteria	Melainabacteria	Gastranaerophilales
Gemmatales	Bacteria	Planctomycetes	Planctomycetacia	Gemmatales
Gemmatimonadales	Bacteria	Gemmatimonadetes	Gemmatimonadetes	Gemmatimonadales
IMCC26256	Bacteria	Actinobacteria	Acidimicrobiia	IMCC26256

Label in heatmap	Kingdom	Phylum	Class	Order
KD4-96 a	Bacteria	Chloroflexi	KD4-96	
KD4-96_b	Bacteria	Chloroflexi	KD4-96	uncultured Chloroflexi
				bacterium
KD4-96 c	Bacteria	Chloroflexi	KD4-96	uncultured bacterium
KI89A	Bacteria	Proteobacteria	Gammaproteobacteria	KI89A clade
Kineosporiales	Bacteria	Actinobacteria	Actinobacteria	Kineosporiales
Ktedonobacterales	Bacteria	Chloroflexi	Ktedonobacteria	Ktedonobacterales
Latescibacterales	Bacteria	Latescibacteria	Latescibacteria	Latescibacterales
Latescibateria	Bacteria	Latescibacteria	metagenome	metagenome
MB-A2-108	Bacteria	Actinobacteria	MB-A2-108	metagenome
MBNT15	Bacteria	Proteobacteria	Deltaproteobacteria	MBNT15
Methanobacteriales	Archaea	Euryarchaeota	Methanobacteria	Methanobacteriales
Micrococcales	Bacteria	Actinobacteria	Actinobacteria	Micrococcales
Micromonosporales	Bacteria	Actinobacteria	Actinobacteria	Micromonosporales
Micropepsales	Bacteria	Proteobacteria	Alphaproteobacteria	Micropepsales
Microtrichales	Bacteria	Actinobacteria	Acidimicrobiia	Microtrichales
Mollicutes RF39	Bacteria	Tenericutes	Mollicutes	Mollicutes RF39
Myxococcales	Bacteria	Proteobacteria	Deltaproteobacteria	Myxococcales
Nitrososphaerales	Archaea	Thaumarchaeota	Nitrososphaeria	Nitrososphaerales
Nitrospirales	Bacteria	Nitrospirae	Nitrospira	Nitrospirales
Opitutales	Bacteria	Verrucomicrobia	Verrucomicrobiae	Opitutales
Pedosphaerales	Bacteria	Verrucomicrobia	Verrucomicrobiae	Pedosphaerales
Pirellulales	Bacteria	Planctomycetes	Planctomycetacia	Pirellulales
Planctomycetales	Bacteria	Planctomycetes	Planctomycetacia	Planctomycetales
PLTA13	Bacteria	Proteobacteria	Gammaproteobacteria	PLTA13
Propionibacteriales	Bacteria	Actinobacteria	Actinobacteria	Propionibacteriales
Proteobacteria	Bacteria	Proteobacteria		
Pseudomonadales	Bacteria	Proteobacteria	Gammaproteobacteria	Pseudomonadales
Pseudonocardiales	Bacteria	Actinobacteria	Actinobacteria	Pseudonocardiales
Pyrinomonadales	Bacteria	Acidobacteria	Blastocatellia (Subgroup	Pyrinomonadales
			4)	
R7C24	Bacteria	Proteobacteria	Gammaproteobacteria	R7C24
RCP2-54	Bacteria	Proteobacteria	Deltaproteobacteria	RCP2-54
Reyranellales	Bacteria	Proteobacteria	Alphaproteobacteria	Reyranellales
Rhizobiales	Bacteria	Proteobacteria	Alphaproteobacteria	Rhizobiales
Rhodospirillales	Bacteria	Proteobacteria	Alphaproteobacteria	Rhodospirillales
Rokubacteriales	Bacteria	Rokubacteria	NC10	Rokubacteriales
Rubrobacterales	Bacteria	Actinobacteria	Rubrobacteria	Rubrobacterales
SBR1031	Bacteria	Chloroflexi	Anaerolineae	SBR1031
Selenomonadales	Bacteria	Firmicutes	Negativicutes	Selenomonadales
Solibacterales	Bacteria	Acidobacteria	Acidobacteriia	Solibacterales
Solirubrobacterales	Bacteria	Actinobacteria	Thermoleophilia	Solirubrobacterales
Sphingobacteriales	Bacteria	Bacteroidetes	Bacteroidia	Sphingobacteriales
Sphingomonadales	Bacteria	Proteobacteria	Alphaproteobacteria	Sphingomonadales
Spirochaetales	Bacteria	Spirochaetes	Spirochaetia	Spirochaetales
Steroidobacterales	Bacteria	Proteobacteria	Gammaproteobacteria	Steroidobacterales
Streptomycetales	Bacteria	Actinobacteria	Actinobacteria	Streptomycetales
Streptosporangiales	Bacteria	Actinobacteria	Actinobacteria	Streptosporangiales

Supplementary Table 3. Continued

Label in heatmap	Kingdom	Phylum	Class	Order
Subgroup 11	Bacteria	Acidobacteria	Subgroup 11	uncultured bacterium
Subgroup 17 a	Bacteria	Acidobacteria	Subgroup 17	
Subgroup 17_b	Bacteria	Acidobacteria	Subgroup 17	uncultured
				Acidobacteriales
				bacterium
Subgroup 17_c	Bacteria	Acidobacteria	Subgroup 17	uncultured Acidobacteria
				bacterium
Subgroup 17 d	Bacteria	Acidobacteria	Subgroup 17	uncultured bacterium
Subgroup 2	Bacteria	Acidobacteria	Acidobacteriia	Subgroup 2
Subgroup 22	Bacteria	Acidobacteria	Subgroup 22	uncultured Holophaga sp.
Subgroup 25	Bacteria	Acidobacteria	Subgroup 25	uncultured soil bacterium
Subgroup 5	Bacteria	Acidobacteria	Subgroup 5	
Subgroup 6 a	Bacteria	Acidobacteria	Subgroup 6	Unknown Order
Subgroup 6 b	Bacteria	Acidobacteria	Subgroup 6	
Subgroup 6 c	Bacteria	Acidobacteria	Subgroup 6	uncultured Acidobacterium
				sp.
Subgroup 7	Bacteria	Acidobacteria	Holophagae	Subgroup 7
Syntrophobacterales	Bacteria	Proteobacteria	Deltaproteobacteria	Syntrophobacterales
Tepidisphaerales	Bacteria	Planctomycetes	Phycisphaerae	Tepidisphaerales
Tistrellales	Bacteria	Proteobacteria	Alphaproteobacteria	Tistrellales
TK10	Bacteria	Chloroflexi	TK10	
Xanthomonadales	Bacteria	Proteobacteria	Gammaproteobacteria	Xanthomonadales

Supplementary Table 3. Continued

Supplementary Table 4. Influence of compartment (i.e., midgut, hindgut, or soil), location, and their interaction on variation in α -diversity of prokaryotic communities in the alimentary tract of third instar Japanese beetle (*Popillia japonica* Newman) larvae and associated soil. F-statistics and *p*-values for Aligned Rank Transform (ART) nonparametric factorial ANOVA.

Factor	đđ	Observe	d ASVs ²	Ever	nness	Shannon	Diversity	Faith	's PD ³
ractor	aj	F	<i>p</i> -value	F	<i>p</i> -value	F	<i>p</i> -value	F	<i>p</i> -value
Compartment	2	37.9	< 0.001	106.7	< 0.001	111.0	< 0.001	38.6	< 0.001
Location	6	0.9	0.505	7.4	< 0.001	8.1	< 0.001	2.2	0.061
Compartment × Location	12	4.8	< 0.001	5.7	< 0.001	7.7	< 0.001	5.2	< 0.001
Error	42								

¹df= degrees of freedom; ²ASVs= Amplicon sequence variants (Richness); ³Faith's PD= Faith's phylogenetic distance

Supplementary Table 5. Pairwise comparisons between compartments on prokaryotic α -diversity in the alimentary tract of third instar Japanese beetle (*Popillia japonica* Newman) larvae and associated soil. Across-location comparisons emphasize relationships between compartments by comparing the slopes between compartments across locations using contrasts for the Aligned Rank Transform (ART) nonparametric ANOVA to generate differences of differences (entries with different letters are significantly different at α =0.05 using Tukey-corrected for multiple comparisons *p*-values). Within-location comparisons emphasize relationships between compartments (soil *versus* midgut, soil *versus* hindgut, and midgut *versus* hindgut) at each location independently by comparing mean α -diversity values using Kruskal-Wallis nonparametric ANOVA (> and < indicate statistical significance and the relative trajectory of those differences at α =0.05). n=3 for each compartment at each location.

		Obse	rved ASVs ¹]	Evenness	Shanı	on Diversity	Fa	ith's PD ²
8	Location	Across locations	Within location	Across locations	Within location	Across locations	Within location	Across locations	Within location
	Blackhawk	ab	Soil > Midgut	а	Soil > Midgut	а	Soil > Midgut	ab	Soil > Midgut
ut	Culver	а	ND	b	Soil > Midgut	b	Soil > Midgut	с	ND
lidg	Janesville1	ab	ND	с	Soil > Midgut	с	Soil > Midgut	abc	ND
S. N	Janesville2	а	ND	с	Soil > Midgut	с	Soil > Midgut	ac	Soil > Midgut
il v	Nursery	а	ND	bc	Soil > Midgut	bc	Soil > Midgut	с	ND
\mathbf{S}	Purdy	b	Soil > Midgut	bc	Soil > Midgut	с	Soil > Midgut	b	Soil > Midgut
	TPAC	с	Soil > Midgut	а	Soil > Midgut	а	Soil > Midgut	d	Soil > Midgut
	Blackhawk	а	ND	а	Soil > Hindgut	ab	ND	ab	Soil > Hindgut
gut	Culver	а	Soil > Hindgut	а	Soil > Hindgut	ab	Soil > Hindgut	ac	Soil > Hindgut
gbui	Janesville1	а	ND	а	Soil > Hindgut	ab	Soil > Hindgut	ac	Soil > Hindgut
H	Janesville2	а	ND	а	Soil > Hindgut	а	Soil > Hindgut	а	Soil > Hindgut
il vs	Nursery	а	ND	а	Soil > Hindgut	ab	ND	b	ND
So	Purdy	b	Soil > Hindgut	а	Soil > Hindgut	ab	Soil > Hindgut	d	Soil > Hindgut
	TPAC	b	Soil > Hindgut	а	Soil > Hindgut	b	Soil > Hindgut	cd	Soil > Hindgut
t	Blackhawk	а	Midgut < Hindgut	а	Midgut < Hindgut	а	Midgut < Hindgut	ab	ND
ngb	Culver	b	ND	b	Midgut > Hindgut	b	Midgut > Hindgut	с	Midgut > Hindgut
Hin	Janesville1	ab	ND	bcd	ND	с	ND	acd	ND
vs.]	Janesville2	ab	ND	ce	Midgut < Hindgut	с	Midgut < Hindgut	acd	Midgut > Hindgut
gut	Nursery	ab	Midgut < Hindgut	bd	ND	bc	Midgut < Hindgut	abd	ND
Mid	Purdy	b	ND	cd	ND	bc	ND	cd	ND
~	TPAC	а	Midgut < Hindgut	ae	Midgut < Hindgut	а	Midgut < Hindgut	b	Midgut < Hindgut

¹ASVs= Amplicon sequence variants (Richness); ²Faith's PD=Faith's phylogenetic distance; ND= no significant difference between samples.

Supplementary Table 6. Pairwise comparisons within compartment on prokaryotic α -diversity in the alimentary tract of third instar Japanese beetle (*Popillia japonica* Newman) larvae and associated soil. Comparisons emphasize differences within a single compartment (soil, midgut, or hindgut) across locations by comparing mean values using a one-way ANOVA and Tukey's-HSD post hoc (entries with different letters are statistically significant at α =0.05). n=3 for each compartment at each location.

	Location	Observed ASVs ¹	Evenness	Shannon Diversity	Faith's PD ²
	ANOVA: F _{6,14} , <i>p</i> -value	5.030, 0.006	18.46, <0.001	5.795, 0.003	5.613, 0.004
	Blackhawk	bc	bc	bc	abc
	Culver	bc	а	abc	bc
ii	Janesville1	abc	а	abc	abc
Sc	Janesville2	abc	с	bc	abc
	Nursery	с	ab	с	с
	Purdy	ab	а	ab	ab
	TPAC	а	а	а	а
	ANOVA: F _{6,14} , <i>p</i> -value	2.592, 0.067	4.882, 0.007	5.722, 0.003	2.552, 0.070
	Blackhawk	a	b	bc	a
Ę	Culver	а	а	а	а
lgu	Janesville1	a	ab	abc	a
Mid	Janesville2	а	ab	abc	а
E.	Nursery	а	ab	ab	а
	Purdy	а	ab	abc	а
	TPAC	а	b	с	а
	ANOVA: F _{6,14} , <i>p</i> -value	6.955, 0.001	3.245, 0.033	3.644, 0.022	11.470, <0.001
	Blackhawk	а	а	а	abc
It	Culver	с	а	ab	d
ıgb	Janesville1	abc	а	ab	bcd
lin	Janesville2	ab	а	ab	ab
щ	Nursery	ab	а	ab	a
	Purdy	с	а	ab	d
	TPAC	bc	a	b	cd

¹ASVs= Amplicon sequence variants (Richness); ²Faith's PD=Faith's phylogenetic distance

Supplementary Table 7. Influence of compartment (midgut, hindgut, soil), location, and their interaction on variation in β -diversity of prokaryotic communities in the alimentary tract of third instar Japanese beetle (*Popillia japonica* Newman) larvae and associated soil. Pseudo-F statistics, R² and *p*-values for factorial permutational analysis of variance (PERMANOVA, Adonis) model used 999 permutations.

			Jaccard		Bray-Curtis			Unweighted UniFrac			Weig	ghted Uni	Frac	DEICODE			
Term	df ¹	pseudo -F	<i>p</i> -value	R ²	pseudo -F	<i>p</i> -value	R ²	pseudo -F	<i>p</i> -value	R ²	pseudo -F	<i>p</i> -value	R ²	pseudo -F	<i>p</i> -value	R ²	
Compartment	2	10.9	0.001	0.191	27.1	0.001	0.313	30.2	0.001	0.389	76.1	0.001	0.599	174.2	0.001	0.654	
Location	6	3.6	0.001	0.187	5.5	0.001	0.189	3.7	0.001	0.144	4.2	0.001	0.099	9.0	0.001	0.101	
Compartment × Location	12	2.4	0.001	0.254	3.7	0.001	0.257	2.5	0.001	0.196	2.9	0.001	0.138	7.4	0.001	0.166	
Residuals	42			0.368			0.242			0.271			0.165			0.079	

¹*df*=degrees of freedom

Supplementary Table 8. Homogeneity of dispersion among compartments (midgut, hindgut, soil) and location of prokaryotic communities in the alimentary tract of third instar Japanese beetle (*Popillia japonica* Newman) larvae and associated soil. Notice that the test of dispersions was run separately and independently for the two factors. F-statistics and *p*-values for permutational analysis of multivariate dispersion (PERMDISP) models used 999 permutations.

			Jaccard		Bray-Curtis		Unweighted UniFrac		Weighted UniFrac		DEICODE	
Term	n	Groups	F-value	<i>p</i> -value	F-value	<i>p</i> -value	F-value <i>p</i> -value		F-value	<i>p</i> -value	F-value	<i>p</i> -value
Compartment	63	3	30.0	0.001	12.0	0.001	36.1	0.001	22.8	0.001	8.3	0.001
Soil vs. Midgut	42	2	11.4	0.007	2.6	0.073	20.8	0.001	22.3	0.002	0.2	0.596
Soil vs. Hindgut	42	2	25.7	0.002	18.4	0.002	26.4	0.001	1.4	0.003	14.3	0.002
Midgut vs. Hindgut	42	2	47.5	0.002	18.8	0.002	53.5	0.001	26.5	0.002	13.9	0.002
Location	63	7	0.4	0.627	0.4	0.501	0.5	0.366	0.6	0.403	0.1	0.977

Supplementary Table 9. Selection of key prokaryotic taxa for pairwise analysis of log-ratios across compartments: midgut and hindgut from third instar larvae of the Japanese beetle (*Popillia japonica* Newman), and associated soil. Taxa are presented in order of criteria for consideration, including most prevalent and/or top taxa driving most of the difference among compartments. Number of amplicon sequence variants (ASVs) assigned to each taxon, as well as their prevalence in samples (21 samples= 100%) and locations (7 locations= 100%) per compartment are presented.

			Soi	il	Mi	dgut	Hine	dgut	Vou toro for
Taxa	Criteria for consideration*	# ASVs	Sample prevalence (%)	Location prevalence (%)	Sample prevalence (%)	Location prevalence (%)	Sample prevalence (%)	Location prevalence (%)	Key taxa for log ratio analysis**
Rhizobiales	<i>i</i> . s, m; <i>ii</i> .	234	100	100	76	100	100	100	Yes
Chthoniobacterales	<i>i</i> . s; <i>ii</i> .	142	100	100	95	100	100	100	Yes
Betaproteobacteriales	<i>i</i> , s.	222	100	100	90	100	100	100	Yes
Enterobacteriales	<i>i</i> . m; <i>ii</i> .	10	95	100	100	100	100	100	Yes
Bacillales	<i>i</i> . m; <i>ii</i> .	61	100	100	100	100	100	100	Yes
Clostridiales	<i>i</i> . h; <i>ii</i> .	2,106	95	100	95	100	100	100	Yes
Bacteroidales	<i>i</i> . h; <i>ii</i> .	47	81	86	95	100	100	100	Yes
Desulfovibrionales	<i>i</i> . h; <i>ii</i> .	22	43	71	71	100	100	100	Yes
Chitinophagales	ii	263	95	100	81	100	<u>14</u>	<u>29</u>	No
Erysipelotrichales	ii	24	<u>29</u>	29	57	100	100	100	No
Steroidobacterales	eroidobacterales ii 23		100	100	76	86	<u>29</u>	71	No

*Criteria for consideration:

i. The three most prevalent orders in the prokaryotic core microbiota of each compartment (Figure 3), s=soil, m=midgut, h=hindgut;

ii. Orders of top 20 ASVs driving most of the variation among compartments in the ordination space (Figure 4);

***Criteria for selection:* Sample and location prevalence are both \geq 33% in all compartments (the log-ratio method is sensitive to sparsity).

Supplementary Table 10. Pairwise analysis of prokaryotic taxa across compartments: midgut and hindgut from third instar larvae of the Japanese beetle (*Popillia japonica* Newman), and associated soil. The natural log-ratio of taxa in each sample was calculated using qurro ⁶⁸. Taxa were chosen according to their prevalence among compartments (**Figure 3**) and their influence on variation along the first axis of the ordination space, Robust Aitchison PCA (**Figure 4**). Statistical significance (Brown-Forsythe Test) is indicated with one star (*) or two stars (**) for p < 0.05 or p < 0.001, respectively.

Comparison	Sampl	le prevale	nce (%)	Location prevalence (%)			Brown- T	Forsyt 'est	he	<i>p</i> -value for Posthoc Brown- Forsythe Test with Bonferroni correction					
Numerator/Denominator	Soil	Midgut	Hindgut	Soil	Midgut	Hindgut	Statistic	<i>p</i> -val	ue	Soil v Midg	s. Soil vs ut Hindg		vs. gut	s. Midgut vs. ut Hindgut	
Bacillales/Bacteroidales	81	95	100	86	100	100	126.1	0.000	**	0.278		0.000	**	0.000	**
Bacillales/Betaproteobacteriales	100	90	100	100	100	100	39.5	0.000	**	0.000	*	0.357		0.000	**
Bacillales/Clostridiales	95	95	100	100	100	100	146.6	0.000	**	0.754		0.000	**	0.000	**
Bacillales/Desulfovibrionales	43	71	100	71	100	100	166.5	0.000	**	0.187		0.000	**	0.000	**
Bacteroidales/Betaproteobacteriales	81	86	100	86	100	100	63.4	0.000	**	0.007	*	0.000	**	0.000	**
Bacteroidales/Desulfovibrionales	43	67	100	71	100	100	1.7	0.197		1.000		0.273		0.482	
Chthoniobacterales/Bacillales	100	95	100	100	100	100	50.6	0.000	**	0.000	*	0.000	**	1.000	
Chthoniobacterales/Bacteroidales	81	90	100	86	100	100	96.9	0.000	**	0.002	*	0.000	**	0.000	**
Chthoniobacterales/Betaproteobacteriales	100	86	100	100	100	100	68.8	0.000	**	0.048	*	0.000	**	0.000	**
Chthoniobacterales/Clostridiales	95	95	100	100	100	100	139.3	0.000	**	0.000	*	0.000	**	0.000	**
Chthoniobacterales/Desulfovibrionales	43	71	100	71	100	100	82.4	0.000	**	0.019	*	0.000	*	0.000	**
Chthoniobacterales/Enterobacteriales	95	95	100	100	100	100	33.4	0.000	**	0.000	*	0.000	**	0.711	
Clostridiales/Bacteroidales	81	90	100	86	100	100	0.9	0.400		1.000		0.122		1.000	
Clostridiales/Betaproteobacteriales	95	86	100	100	100	100	88.6	0.000	**	0.003	*	0.000	*	0.000	*
Clostridiales/Desulfovibrionales	43	71	100	71	100	100	0.5	0.586		0.974		0.608		1.000	
Desulfovibrionales/Betaproteobacteriales	43	67	100	71	100	100	75.8	0.000	**	0.026	*	0.000	**	0.000	**
Enterobacteriales/Bacillales	95	100	100	100	100	100	3.8	0.031	*	0.055		0.031	*	1.000	
Enterobacteriales/Bacteroidales	81	95	100	86	100	100	75.4	0.000	**	0.002	*	0.000	**	0.000	**

Supplementary Table 10. Continued.

Comparison	Sample prevalence (%)			Location prevalence (%)			Brown-Forsythe Test			<i>p</i> -value for Posthoc Brown- Forsythe Test with Bonferroni correction					
Numerator/Denominator	Soil	Midgut	Hindgut	Soil	Midgut	Hindgut	Statistic	<i>p</i> -val	ue	Soil <i>vs.</i> Midgut		Soil <i>vs.</i> Hindgut		Midgut vs. Hindgut	
Enterobacteriales/Betaproteobacteriales	95	90	100	100	100	100	21.5	0.000	**	0.000	**	0.021	*	0.002	*
Enterobacteriales/Clostridiales	90	95	100	100	100	100	72.1	0.000	**	0.017	*	0.000	**	0.000	**
Enterobacteriales/Desulfovibrionales	43	71	100	71	100	100	90.0	0.000	**	0.003	*	0.000	**	0.000	**
Rhizobiales/Bacillales	100	76	100	100	100	100	21.9	0.000	**	0.012	*	0.000	**	0.204	
Rhizobiales/Bacteroidales	81	71	100	86	100	100	89.5	0.000	**	1.000		0.000	**	0.000	**
Rhizobiales/Betaproteobacteriales	100	76	100	100	100	100	86.4	0.000	**	0.006	*	0.000	**	0.000	**
Rhizobiales/Chthoniobacterales	100	76	100	100	100	100	12.9	0.000	**	0.000	**	0.006	*	0.063	
Rhizobiales/Clostridiales	95	76	100	100	100	100	124.9	0.000	**	0.780		0.000	**	0.000	**
Rhizobiales/Desulfovibrionales	43	57	100	71	100	100	114.1	0.000	**	1.000		0.000	**	0.000	**
Rhizobiales/Enterobacteriales	95	76	100	100	100	100	15.0	0.000	**	0.018	*	0.000	**	0.646	

Supplementary Table 11. Influence of location (all locations), soil management history (TPAC *versus* naturally infested locations), and manipulated larval treatment (Purdy *versus* Nursery) on variation in β -diversity of prokaryotic communities per compartment in the alimentary tract of third instar Japanese beetle (*Popillia japonica* Newman) larvae and associated soil. Permutational multivariate analysis of variance (PERMANOVA) and permutational analysis of multivariate dispersion (PERMDISP) methods were used to test differences between locations and homogeneity of dispersion among locations within each compartment. Test statistic (pseudo-F and F-value for PERMANOVA and PERMDISP, respectively) and *p*-values for both models using 999 permutations.

				Jaccard		Bray-Curtis		ighted Frac	Weighted UniFrac		DEICODE	
	Compartment	Method	Test statistic	<i>p</i> -value	Test statistic	<i>p</i> -value	Test statistic	<i>p</i> -value	Test statistic	<i>p-</i> value	Test statistic	<i>p</i> -value
All locations Sample size=21 Groups=7	Soil	PERMANOVA	7.0	0.001	16.3	0.001	6.7	0.001	25.6	0.001	91.2	0.001
		PERMDISP	0.4	0.323	0.5	0.249	0.4	0.350	0.6	0.203	0.3	0.700
	Midgut	PERMANOVA	2.1	0.001	3.4	0.001	2.2	0.001	2.3	0.008	8.9	0.001
		PERMDISP	0.8	0.210	0.5	0.413	0.7	0.202	0.7	0.316	0.6	0.251
	Hindgut	PERMANOVA	1.6	0.001	1.8	0.001	2.0	0.001	2.6	0.005	4.9	0.001
		PERMDISP	1.2	0.212	2.7	0.007	0.6	0.587	0.3	0.670	0.5	0.667
Soil management history Sample size=18 Groups=2	Soil	PERMANOVA	3.1	0.003	3.6	0.006	3.0	0.007	2.3	0.083	11.8	0.005
		PERMDISP	150.5	0.009	53.9	0.006	75.6	0.006	25.9	0.008	2.4	0.184
	Midgut	PERMANOVA	1.8	0.010	1.5	0.124	2.9	0.012	2.1	0.078	1.1	0.398
		PERMDISP	4.1	0.653	2.3	0.184	1.0	0.457	0.0	0.909	4.5	0.082
	Hindgut	PERMANOVA	1.6	0.007	1.9	0.006	1.5	0.043	4.5	0.004	1.7	0.175
		PERMDISP	13.5	0.086	44.2	0.009	6.6	0.061	3.3	0.124	2.1	0.183
Manipulated larval treatment Sample size=6 Groups=2	Soil	PERMANOVA	6.4	0.099	13.5	0.100	6.9	0.114	21.9	0.104	3.9	0.102
		PERMDISP	0.5	0.102	0.3	0.109	0.7	0.103	0.3	0.046	1.9	0.186
	Midgut	PERMANOVA	2.6	0.112	2.8	0.101	2.5	0.112	1.3	0.202	3.5	0.171
		PERMDISP	5.7	0.107	26.4	0.043	2.9	0.086	10.6	0.121	0.1	0.808
	Hindgut	PERMANOVA	1.3	0.106	1.3	0.211	2.4	0.104	0.8	0.387	1.9	0.098
		PERMDISP	6.2	0.087	1.9	0.104	0.8	0.045	0.0	0.897	11.1	0.372