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Supplementary Text

Relations with community detection in static networks

The expression of the clustered-covariance eq. (12) encompasses several well-known heuristics 
for the clustering of static network as special cases. The simplest example is the case of an undi-
rected static network with M edges described by the adjacency matrix A (see Supplementary 
Text Relations with co-clustering and Tab. S4 for more examples). Considering a discrete time 
random walk on this network, the transition matrix after n steps is given by T(n) = (D−1A)n



where D is the diagonal matrix with diagonal element (i, i) equal the the degree ki of ver-
tex i. The stationary distribution of the random walk is given by the vector π, with elements
πi = ki/2M . In this case, the element (i, j) of the clustered covariance (eq. 12), computed after
one step and evaluated at stationarity, reduces to

Rij(n = 1;H) =

(
πi
Aij

ki
− πiπj

)
δ (ci, cj) =

1

2m

(
Aij −

kikj
2m

)
δ (ci, cj) . (S1)

Or in matrix notation

R(n = 1;H) = HT
[
ΠD−1A− πTπ

]
H =

1

2m
HTBH, (S2)

where B is the modularity matrix (55,56). We recognize the classical Newman-Girvan modular-
ity (57) by taking the trace of the clustered covariance: Q = trace [R(n = 1;H)] (32). Finding
a partition that maximizes the modularity, i.e. the number of observed edges inside each clusters
minus the number expected from a random null model, can then be seen as finding a partition
that the maximizes the elements on the diagonal of R(n = 1;H), namely the probability that
the walkers stay in the same clusters after one step minus the same probability for two inde-
pendent walkers, evaluated at stationarity. This analogy allows us to see that the random null
model of the modularity corresponds to the outer product of the stationary distribution of the
random walks. As a matter of fact, the stationary distributions of different models of random
walks correspond to different generative network null models (35). This random walk frame-
work has been shown to be a very fruitful way to generalize modularity optimization and unify
different clustering heuristics (32,35,42). By allowing the walkers to make multiple steps (32),
or by considering a continuous time random walk (35), one can use the elapsed time of the
random walk as a resolution parameter allowing to recover the multiscale community structure
of networks (42) and overcome the resolution limit of the Newman-Girvan modularity (41).

A particularly interesting special case of application of eq. (12) is the case of a static directed
network with M edges and with adjacency matrix A. The in-degrees of node i is kin

i =
∑

j Aji

and its out-degree is kout
i =

∑
j Aij . The transition matrix after one step is given by Tij =

Aij/k
out
i if kout

i ̸= 0 and Tij = 0 if kout
i = 0. Considering an initial distribution of walkers given

by pi(0) = kout
i /M , the distribution after one step is given by pi(1) =

∑
j pj(0)Tij = kin

i /M .
Replacing these expressions in eq. (12) and taking the trace of the clustered covariance matrix,



we find

trace [R(n = 1;H)] =
1

m

∑
ij

(
Aij −

kout
i kin

j

m

)
δ (ci, cj) = Qd., (S3)

which is a classical generalization of modularity to directed networks (26, 58).

Relations with co-clustering

It is interesting to note that the clustering of symmetric covariance matrices with the Markov
stability framework is linked to the spectral approaches of graph clustering (32). Indeed, as the
time parameter increases, the contribution of the eigenvectors of the transition matrix, which are
similar to the ones of the random walk graph Laplacian, L (3), to the stability are re-weighted
according to their eigenvalues to give more weight to larger and larger scales in the network.
In the static undirected case, the random walk has a stationary distribution, π, i.e. π is a left-
eigenvector of T with eigenvalue 1. The covariance is given by Sstatic(τ) = Πe−τL − πTπ.

In the case of asymmetric matrices, spectral clustering approaches usually rely on the singular
vectors rather than on the eigenvectors to capture the structural asymmetries of a system (59).
Similarily, the forward and backward clustering of our framework can be related to the clus-
tering of the singular vectors of the transition matrix. In the temporal case, the existence
of a stationary distribution is not guaranteed, however, we have p(t1)T(t1, t2)T

inv(t2, t1) =

p(t1) and p(t2)Tinv(t2, t1)T(t1, t2) = p(t2), i.e. p(t1) and p(t2) are left-eigenvectors of
T(t1, t2)T

inv(t2, t1) and Tinv(t2, t1)T(t1, t2), respectively, with eigenvalue 1. If the pro-
cesses defined by T(t1, t2)T

inv(t2, t1) and Tinv(t2, t1)T(t1, t2) are irreducibles, p(t1) and p(t2)

are their respective stationary distributions. Using the covariances of the forward and in-
verse backward flows (eqs. 2 & S4) is therefore a natural generalization of the Markov
stability in the stationary case to the non-stationary case. Moreover, the inverse transi-
tion matrix, Tinv(t2, t1) = P(t2)

−1T(t1, t2)
TP(t1), can be seen as the adjoint operator of

T(t1, t2) with respect to the inner product ⟨x, y⟩t =
∑

i xiyi/pi(t), for which we have
⟨p(t1)T(t1, t2),p(t2)⟩t2 = ⟨p(t1),p(t2)Tinv(t2, t1)⟩t1 . The vectors p(t1) and p(t2) are there-
fore singular vectors of the transition matrix with respect to this inner product.



Special cases of the random walk covariances in static networks

Table S4 shows how Modularity (57), directed-Modularity (58,60) and Markov Stability (32,35)
can be constructed from special cases of the non-stationary clustered covariance from eq. (12).
Similarly, Tab. S4 shows that the clustering of static directed networks using the bibliographic
coupling and co-citation matrices (61) are special cases of the clustering with the forward and
backward non-stationary covariances from eqs. (2) and (3), respectively.

Covariances of inverse processes

An alternative backward process than the one defined in eq. (3) can be constructed by consider-
ing the inverse of the process that started at t1 instead of the reversed evolution of the network.
In this case, the corresponding covariance is given by

Sinv
back(t1, t) = P(t)Tinv(t, t1)T(t1, t)− p(t)Tp(t)

= T(t1, t)
TP(t1)T(t1, t)− p(t)Tp(t). (S4)

Similarily, the covariance of the inverse backward process of eq. 3 is given by

Sinv
forw(t2, t) = P(t)Tinv

rev(t, t2)Trev(t2, t)− p(t)Tp(t)

= T(t2, t)
T
revP(t1)Trev(t2, t)− p(t)Tp(t). (S5)

A difference between these two definitions is the choice of the initial condition, which is at t2
for eq. 3 and at t1 for eq. S4. The matrices Sforw(t1, t) and Sin

back
v (t1, t) are both covariances of 

the same diffusion process that start at t1 and evolve until t > t1 while the matrices Sforw(t1, t) 
and Sback(t2, t) are the covariances of two different processes, the first starting at t1 and evolving 
in the direction of time and the second starting at t2 and evolving backward in time. Here, we 
prefer to use Sforw(t1, t) and Sback(t2, t) for the general clustering of temporal networks between 
t1 and t2 using p(t1) and p(t2) as two uniform distributions. Using the inverse covariances (S4) 
and (S5) may, for example, be preferred when studying a specific diffusion process.



Importance of early and late times on the optimal partitions

We consider a simple example of temporal network with eight nodes (N = 8) that initially
forms two communities of four nodes each and after a time t⋆ split to form four communities of
two nodes. The question we want to answer is how does the partition maximizing the forward
flow stability (eq. 4) changes as a function of t⋆ when the integration goes from t1 = 0 < t⋆

until t > t⋆. The Laplacian matrix from t = 0 until t = t⋆ is a matrix with four 4×4 blocks. The
off diagonal blocks are zero matrices and the diagonal blocks are two similar matrices given by

LA =


1 −1/3 −1/3 −1/3
−1/3 1 −1/3 −1/3
−1/3 −1/3 1 −1/3
−1/3 −1/3 −1/3 1

 . (S6)

For times t > t⋆, the Laplacian has the same block structure with diagonal blocks given by

LB =


1 −1 0 0

−1 1 0 0

0 0 1 −1
0 0 −1 1

 . (S7)

The two Laplacians are symmetric and commute. They are therefore simultaneously diag-
onalisable, i.e LA = UΛAU

T and LB = UΛBU
T with ΛA = diag((4/3, 4/3, 4/3, 0)),

ΛB = diag((2, 2, 0, 0)) and where

U =


0 −1/

√
2 −1/2 1/2

0 1/
√
2 −1/2 1/2

−1/
√
2 0 1/2 1/2

1/
√
2 0 1/2 1/2

 (S8)

is a unitary matrix. The transition matrix is given by

T(0, t) =

Ue−λtΛAUT = UΣA(t)U
T if 0 ≤ t ≤ t⋆

Ue−λt⋆ΛAe−λ(t−t⋆)ΛBUT = UΣA(t
⋆)ΣB(t− t⋆)UT if t > t⋆

, (S9)



where λ is the random walk rate. In the rest of this section, we use the notation T(t) as meaning
T1(0, t). We can now calculate the forward covariance (eq. 2) taking p = 1

N
(1111) as initial

condition. Note that p is a stationary state of the system, i.e. p = pT(t) ∀t such that t ≥ 0. The
forward covariance is given by Sforw(t) = PT(t)P−1T(t)TP− pTp = 1

N
T(t)T(t)T − 1

N2

←→
1 .

Or, using eq. (S9)

Sforw(t) =

 1
N
UΣ2

A(t)U
T − 1

N2

←→
1 if 0 ≤ t ≤ t⋆

1
N
UΣ2

A(t
⋆)Σ2

B(t− t⋆)UT − 1
N2

←→
1 if t ≥ t⋆

. (S10)

We find the forward flow stability by integrating Sforw(t
′) from 0 to t and dividing by t. This

yields the matrix

Fforw(t) =

 1
tN
U
∫ t

0
Σ2

A(t
′)dt′UT − 1

N2

←→
1 if 0 ≤ t ≤ t⋆

t⋆

t
Fforw(t

⋆) + 1
tN
UΣ2

A(t
⋆)
∫ t

t⋆
Σ2

B(t
′ − t⋆)dt′UT − t−t⋆

tN2

←→
1 if t ≥ t⋆

,

(S11)
where

∫ t

0
Σ2

A(t
′)dt′ = diag

(
( 3
8λ
(1 − e−

8
3
λt), 3

8λ
(1 − e−

8
3
λt), 3

8λ
(1 − e−

8
3
λt), t)

)
and

∫ t

t⋆
Σ2

B(t
′ −

t⋆)dt′ = diag
(
( 1
4λ
(1−e−4λ(t−t⋆)), 1

4λ
(1−e−4λ(t−t⋆), t−t⋆, t−t⋆)

)
. The resulting matrix Fforw(t)

is formed by four 4×4 blocks. The off diagonal blocks are equal to − 1
N2

←→
1 and the diagonal

blocks have the following form
F forw
11 (t) F forw

12 (t) F forw
13 (t) F forw

13 (t)

F forw
12 (t) F forw

11 (t) F forw
13 (t) F forw

13 (t)

F forw
13 (t) F forw

13 (t) F forw
11 (t) F forw

12 (t)

F forw
13 (t) F forw

13 (t) F forw
12 (t) F forw

11 (t)

 . (S12)

Moreover, for 0 ≤ t ≤ t⋆, F forw
12 (t) = F forw

13 (t).

The partition maximizing the forward flow stability groups together positive elements of
Fforw(t) and avoids its negative elements. As the off diagonal blocks are always negative, re-
gardless of t, the optimal partition depends on the signs of F forw

11 (t), F forw
12 (t) and F forw

13 (t) as a
function of t.



We have

F forw
11 (t) =


9

32Nλt

(
1− e−

8
3
λt
)
+ N−4

4N2 if 0 ≤ t ≤ t⋆

1
32Nλt

(
e−

8
3
λt⋆
(
8λ(t− t⋆)− 4e−4λ(t−t⋆) − 5

)
+ 9 + 8λt

)
− 1

N2 if t ≥ t⋆
,

(S13)
which is always positive, with F forw

11 (0) = N−1
N2 and F forw

11 (t) → 1
4N2

(
N
(
e−

8
3
λt⋆ + 1

)
− 4
)

as
t→∞.

We have

F forw
12 (t) =


3

32Nλt

(
e−

8
3
λt − 1

)
+ N−4

4N2 if 0 ≤ t ≤ t⋆

1
32Nλt

(
e−

8
3
λt⋆
(
8λ(t− t⋆) + 4e−4λ(t−t⋆) − 1

)
− 3 + 8λt

)
− 1

N2 if t ≥ t⋆
,

(S14)
which is negative at t = 0 with F forw

12 (0) = − 1
N2 and then increases monotonically. At t⋆,

F forw
12 (t⋆) is positive only if t⋆ > t̂f, where t̂f is the time at which F forw

12 (t) crosses the x-axis if
this happens before t⋆. Its value is given by

t̂f =
3

8λ

(
N

N − 4
+W0

(
− N

N − 4
e−

N
N−4

))
, (S15)

where W0 is the principal branch of the Lambert W function. We see that t̂f is made of two
terms, a linear coefficient 1

λ
and a constant term depending only on N (which is fixed at N = 8

here). By varying λ one can therefore adjust t̂f in order to make F forw
12 (t) positive or negative for

any t such that 0 < t ≤ t⋆. As t→∞, F forw
12 (t)→ 1

4N2

(
N
(
e−

8
3
λt⋆ + 1

)
− 4
)
> 0 indicating

that even if F forw
12 (t⋆) is negative, F forw

12 (t) eventually becomes positive.

For F forw
13 (t), we have

F forw
13 (t) =

F forw
12 (t) if 0 ≤ t ≤ t⋆

1
32Nλt

(
e−

8
3
λt⋆ (3− 8λ(t− t⋆))− 3 + 8λt

)
− 1

N2 if t ≥ t⋆
. (S16)

Similarly to F forw
12 (t), F forw

13 (t⋆) > 0 only if t⋆ > t̂f. As t → ∞, F forw
13 (t) →

1
4N2

(
N
(
1− e−

8
3
λt⋆
)
− 4
)

which is positive only if t⋆ > t13 = 3
8λ

ln N
N−4

whose value can
again be controlled by varying λ.



we remark that F forw
11 (t) ≥ F forw

12 (t) ≥ F forw
13 (t), we have three possible configurations: A)

F forw
11 (t) > 0, F forw

12 (t) > 0 and F forw
13 (t) > 0: the optimal partition is composed of two com-

munities of size 4; B) F forw
11 (t) > 0, F forw

12 (t) > 0 and F forw
13 (t) < 0: the optimal partition is

composed of four communities of size 2; C) F forw
11 (t) > 0, F forw

12 (t) < 0 and F forw
13 (t) < 0: the

optimal partition is composed of 8 singleton communities.

Noticing that t13 < t̂f, we therefore have three scenarios:

1) t⋆ < t13 < t̂f: F forw
12 (t) and F forw

13 (t) are negative at t = t⋆. The switch to four com-
munities happens too fast for the walkers to have time to explore the two community
structure. After t⋆, F forw

13 (t) remains negative while F forw
12 (t) eventually becomes positive.

For short intervals, the configuration C is optimal. For longer intervals, the configuration
B becomes optimal. This change can be controlled by varying λ.

2) t13 < t⋆ < t̂f: As before, F forw
12 (t) and F forw

13 (t) are negative at t = t⋆. While the walkers
have not fully explored the two communities structure at t⋆, they have sufficiently done so
that after some time F forw

12 (t) and F forw
13 (t) both become positive and the optimal forward

partition is given by configuration A.

3) t13 < t̂f < t⋆: F forw
12 (t⋆ > and F forw

13 (t⋆) are already positive at t = t⋆ and remain positive
afterward. The walkers have already fully explored the two community structure before
t⋆ and the optimal forward partition remains given by configuration A.

Figure S1 shows a graph of F forw
12 (t) and F forw

13 (t) for different values of λ. We see that the
importance of early or late times on the forward partition can be controlled by varying the value
of the random walk rate. Indeed, the three conditions corresponding to the three scenarios are
expressed as inequalities between λt⋆ and constants that depends only on the structure of the
network.

Considering the backward evolution by reversing time, the system starts in the configuration
with four communities at t = 0 until t⋆ and then forms the structure in two communities. For
the backward case, we have

T(t)rev =

UΣB(t)U
T if 0 ≤ t ≤ t⋆

UΣB(t
⋆)ΣA(t− t⋆)UT if t > t⋆

, (S17)



Sback(t) =

 1
N
UΣ2

B(t)U
T − 1

N2

←→
1 if 0 ≤ t ≤ t⋆

1
N
UΣ2

B(t
⋆)Σ2

A(t− t⋆)UT − 1
N2

←→
1 if t ≥ t⋆

, (S18)

Fback(t) =

 1
tN
U
∫ t

0
Σ2

B(t
′)dt′UT − 1

N2

←→
1 if 0 ≤ t ≤ t⋆

t⋆

t
Fback(t

⋆) + 1
tN
UΣ2

B(t
⋆)
∫ t

t⋆
Σ2

A(t
′ − t⋆)dt′UT − t−t⋆

tN2

←→
1 if t ≥ t⋆

.

(S19)

The backward flow stability matrix has the same structure than in the forward case (eq. S12),
but with

F back
11 (t) =


1

8Nλt

(
1− e−4λt

)
+ N−2

2N2 if 0 ≤ t ≤ t⋆

1
32Nλt

(e−4λt⋆(2− 6e−
8
3
λ(t−t⋆)− 3e−

4
3
λ(2t−5t⋆))+

7 + 8λ(t+ t⋆))− 1
N2

if t ≥ t⋆
, (S20)

which is always positive with a value of N−1
N2 at t = 0 and N−4

4N2 as t→∞.

F back
12 (t) =


1

8Nλt

(
e−4λt − 1

)
+ N−2

2N2 if 0 ≤ t ≤ t⋆

1
32Nλt

(e−4λt⋆(6e−
8
3
λ(t−t⋆)− 2− 3e−

4
3
λ(2t−5t⋆))−

1 + 8λ(t+ t⋆))− 1
N2

if t ≥ t⋆
, (S21)

which starts with a negative value of − 1
N2 at t = 0 and increases until t = t⋆. F back

12 (t⋆) is
positive only if t⋆ > t̂b where

t̂b =
1

4λ

(
N

N − 2
+W0

(
− N

N − 2
e−

N
N−2

))
. (S22)

As t → ∞, F back
12 (t) → N−4

4N2 , i.e. F back
12 (t) eventually becomes positive if it was not the case at

t⋆ or stays positive otherwise.

F back
13 (t) =

−
1
N2 if 0 ≤ t ≤ t⋆

1
32Nλt

(
3e−

8
3
λ(t−t⋆) + 8λ(t− t⋆)

)
− 1

N2 if t ≥ t⋆
, (S23)

which is negative until t = t⋆ and then increases monotonically, eventually becomes positive



and reaches a value of N−4
4N2 as t→∞. The time at which F back

13 (t) becomes positive is given by

t̂′b =
1

8λ(N − 4)

(
3N + 8λNt⋆ + (3N − 12)W0

(
− N

N − 4
e−

3N+32λt⋆

3N−12

))
. (S24)

Contrary to t̂f (eq. S15) and t̂b (eq. S22) that both tend to zero as the speed of the walkers is
increased, t̂′b tends to 2t⋆ as λ → ∞. This indicates that F back

13 (t) can become positive only for
times larger than 2t⋆. The importance of early and late time can therefore also be controlled with
λ, however there is a limit on the possibility of detecting the first structure (two communities)
if it lasts for a shorter time than the second structure (four communities). This is due to the fact
that the second structure (configuration B) is composed of smaller communities. When looking
at the network evolution from the point of view of the backward partition, i.e. from the end of
the interval backward in time, the vision of the first structure can be obstructed by the second
smaller structures. In this case, the first structure can be captured by the forward partition.

As for the forward partition, for the backward case we have F back
11 (t) ≥ F back

12 (t) ≥ F back
13 (t) for

t > 0. We therefore have the following scenarios: 1) t < t̂′b, F back
11 (t) is positive and F back

13 (t) is
negative. The sign of F back

12 (t) is controlled by the RW rate λ. For slow RWs, configuration C is
optimal (singletons communities). For fast RWs, configuration B is optimal (four communities).
2) t > t̂′b, F back

11 (t) is positive and the signs of F back
12 (t) and F back

13 (t) is controlled by λ. As the RW
rate increases, the optimal backward partition changes from configurations C to B and finally
A.

Figure S1 shows a graph of F back
12 (t) and F back

13 (t) for different values of λ showing that the
evolution of the network can be captured by combining the solutions of the optimal forward
and backward partitions for different values of λ.
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Figure S1: Graph of the functions F forw
12 (t) & F forw

13 (t) (top) and F back
12 (t) & F back

13 (t) (bottom) for
different values of the random walk rate λ. The sign of these functions control whether the forward,
respectively backward, optimal partitions take the form of the early times or later times. Here, the
network splits from a structure, A, in 2 communities to a structure, B, in four communities at t⋆ = 2. By
varying the value of λ, we can give give more importance to the structure at early times (fast diffusion)
or to the structure at later times (slow diffusion). By considering a time interval that lasts 3 time units,
the backward process starts at t2 = 3 with a reverse time evolution (bottom). F back

13 (t) can be positive
only for values of the reverse time larger than 2. We show three scenarios depending on the value of λ:
1) λ = 5 (purple), the optimal forward and backward partitions have the form of A; 2) λ = 0.4 (green),
the optimal forward partition has the form of A and the optimal backward partition has the form of B; 3)
λ = 0.2 (yellow), the optimal forward and backward partitions have the form of B.
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Figure S2: Results of the flow stability community detection applied to toy examples of dynamic
community events. We reproduce the community events from Ref. (27) with the addition of the Ship of
Theseus (62). For each event, we show the schematic evolution on the left and the flow stability results
on the right. Note that our framework does not distinguish between a node that is absent or a node that
is inactive. Such nodes are usually clustered in singleton communities. We show the results for several
values of the resolution (waiting time τw) when several non trivial solutions exists. For each result, we
represent the partitions in two manners: 1) the nodes as dots and the forward and backward communities
as lines joining the dots, 2) as a bipartite graph where the nodes represents the communities and the edges
represents the probability transitions from forward to backward communities of the random walk. The
death/birth (A), growth/contraction (B), split/merge (C) and continue (D) events are well detected by our
method. However, the flow stability is unable to distinguish the resurgence event (E) from the continue
event as the absence of all connections in the middle results in an unchanged diffusion. To distinguish
such situations, one has to split the time window in two resulting in a sequence of ’death’ and ’birth’ (A).
In the ship of Theseus (F), the initial and final states are captures by the forward and backward partitions.
To capture the dynamics between those states one needs to look at the transitions probabilities: there are
non-zero probabilities to go from the initial ship to the two final ships, however there is a zero probability
to go from nodes of the bottom ship at the beginning to the top ship at the end. We understand that the
two final ships are linked to the initial ship.
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Figure S3: Community detection of the free-ranging house mice contact network using a series of 
static networks with an aggregation window of a half week. The hierarchical infomap algorithm (50) 
is used on each time slice and the evolution of the communities is tracked using the method developed 
in Ref. (29) with a history parameter of 8 time points. The infomap algorithm is run with the default 
parameters for the hierarchical case. (A) Number of communities per time slice found by infomap for 
different hierarchical levels. An issue with this approach is that the method does not necessarily find the 
same number of hierarchical levels at each time slice which makes the comparison from slice to slice not 
clear. (B) Number of communities per week found with the flow stability for the two resolutions shown 
in the main manuscript. As the resolution parameter of the flow stability can be interpreted as a physical 
quantity (characteristic waiting time of the random walk) the comparison between different time slices 
is done in a principled manner. We see that, contrary to the case in (A), the number of clusters per week 
varies more smoothly with the flow stability. (C & D) Result of the tracking of communities found with 
infomap for the coarsest level (i.e. level 1) and the finest level (i.e. 2, 3 or 4 depending on the time slice), 
respectively.



Figure S4: Hierarchical multilayer community detection with the Infomap algorithm applied to the 
free-ranging house mice contact network. A multilayer representation of this dataset is constructed 
by aggregating the activity in static networks over half-week time windows. The Infomap algorithm 
(30) is run with the parameters flow model=’undirected’, multilayer relax by jsd for 
neighborhood flow coupling for temporal networks (21), multilayer relax limit=1 limiting the 
RW to jump only to neighboring layers in order to encode the temporal ordering, and with a value 
multilayer relax rate of 0.001. (A) Number of communities per layer (half-week) found by 
the multilayer Infomap algorithm at different hierarchical levels. (B) Multilayer partition at hierarchical 
level 3. Here, infomap find 5 scales of communities considering all time slices simultaneously, however 
the communities found are all elongated in time and the dynamics of communities splitting found by the 
flow stability is not recovered.



Figure S5: Influential communities of authors of articles published in the APS journals for three
communities of network scientists in the 2000s. Each node represent a community and its size is
indicated in the center. The colors represent the distribution of countries inside each community where
each author is associated to the country most often associated with their affiliations. The pair of words
next to each node indicate one of the most frequent pair of words of all the titles of the articles belonging
to the community. Arrows between the communities represents probability transitions (> 5%) from
community to community of the diffusive process starting in 2010 and finishing in 1970.



static aggregation NMI with fast flow stability NMI with slow flow stability
slice length from start from end forward backward forward backward

0.1 {a, b, c}, {d} {a}, {b, c, d} 1.00 1.00 0.54 0.31
0.2 {a, b, c}, {d} {a}, {b, c, d} 1.00 1.00 0.54 0.31
0.3 {a, b, c}, {d} {a, d}, {b, c} 1.00 0.31 0.54 1.00
0.4 {a, b, c}, {d} {a, d}, {b, c} 1.00 0.31 0.54 1.00
0.5 {a, d}, {b, c} {a, d}, {b, c} 0.31 0.31 0.67 1.00
0.6 {a, d}, {b, c} {a, d}, {b, c} 0.31 0.31 0.67 1.00
0.7 {a, d}, {b, c} {a, d}, {b, c} 0.31 0.31 0.67 1.00
0.8 {a, d}, {b, c} {a, d}, {b, c} 0.31 0.31 0.67 1.00
0.9 {a, d}, {b, c} {a, d}, {b, c} 0.31 0.31 0.67 1.00
1.0 {a, d}, {b, c} {a, d}, {b, c} 0.31 0.31 0.67 1.00

Table S1: Comparison between static partitions with different aggregation length and the flow stability
partitions from the example in Fig. 1. The first column shows the slice lengths expressed as a ratio of the
total length. The second and third columns show the partitions found by optimizing modularity on the
networks found by aggregating from the beginning and end of the network with increasing slice lengths.
The remaining columns show the value of the Normalized Mutual Information computed between the
initial and final static partitions and the forward and backward flow stability partitions, respectively, for
the case of the fast and slow diffusion of Fig. 1. Similar results are obtained when self-loops with weight
corresponding to the inactivity time of nodes are added during the aggregation. We see that the NMI
with the slow forward partition is never equal to one, indicating that the static aggregations cannot fully
reproduce the results of the flow stability.

Forward 1 2 3 4 5 6 7 8 9 10

size 49 50 46 22 24 47 1 1 1 1

T̄first
Day 1 Day 1 Day 1 Day 1 Day 1 Day 1 Day 2 Day 2 Day 2 Day 2
09:00 09:32 08:56 09:04 09:56 09:04 08:43 08:41 08:42 08:42

Backward 1 2 3 4 5 6 7 8 9 10

size 24 26 51 46 24 22 46 1 1 1

T̄last
Day 2 Day 2 Day 2 Day 2 Day 2 Day 2 Day 2 Day 1 Day 1 Day 1
17:09 17:00 17:03 17:03 13:21 11:58 17:00 11:59 17:08 17:04

Table S2: Size, average time of the first (T̄first) and last (T̄last) contact for each cluster of the forward and
backward flow stability partitions at scale τw = 1 h.



Forward 1 2 3 4 5 6 7 8 9 10 11

size 114 52 67 1 1 1 1 1 2 1 1

T̄first
Day 1 Day 1 Day 1 Day 1 Day 2 Day 2 Day 2 Day 2 Day 1 Day 2 Day 2
08:55 09:04 08:55 13:21 09:40 08:42 08:42 08:40 14:17 08:41 08:43

Backward 1 2 3 4 5 6 7 8 9 10 11 12

size 141 26 10 21 23 1 1 1 1 15 1 1

T̄last
Day 2 Day 2 Day 2 Day 2 Day 2 Day 1 Day 2 Day 2 Day 1 Day 2 Day 1 Day 1
17:07 17:08 11:58 12:52 17:02 17:04 12:18 13:44 17:08 14:18 11:59 17:10

Table S3: Size, average time of the first (T̄first) and last (T̄last) contact for each cluster of the forward and
backward flow stability partitions at scale τw = 63 s.
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complex network
scale-free network
small-world network
weighted network
directed network
growing network
evolving network

Table S5: Keywords used to find authors of articles about complex networks in the American Physical
Society journals. The titles and abstracts of articles published between 2000 and 2010 were searched.
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tá

n
D

ez
sö
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