Supplementary Information for Activity-induced polar patterns of filaments gliding on a sphere

Chiao-Peng Hsu,^{1, ∗} Alfredo Sciortino,^{1, ∗} Yu Alice de la Trobe,¹ and Andreas R. Bausch^{1, †}

¹ Center for Protein Assemblies and Lehrstuhl für Zellbiophysik (E27), Physics Department, Technische Universität München, Garching, Germany

Purification of gelsolin

Gelsolin was purified from adult bovine serum (Sigma Aldrich). The freshly defrosted serum was supplied with 50 mM Tris-HCl (pH 8.0) and 0.2 mM phenylmethylsulfonyl fluoride. Then, the serum proteins were precipitated with 35% and 50% saturated ammonium sulfate and subsequently spun down by centrifugation. The pellet obtained by the second precipitation was washed twice with a buffer containing 25 mM Tris-HCl (pH 8.0) and 50% saturated ammonium sulfate and then dissolved and subsequently dialyzed against a buffer containing 25 mM Tris-HCl (pH 8.0), 45 mM NaCl, and 1 mM EGTA. Gelsolin was purified by ion-exchange chromatography on a diethylaminoethyl cellulose column by washing first with the same buffer, then with a buffer containing 30 mM NaCl, and finally eluted with a buffer containing 25 mM Tris-HCl (pH 8.0), 30 mM NaCl, and $2 \text{ mM } \text{CaCl}_2$.

Preparation of biotinylated HMM

Biotin-NHS (Sigma Aldrich) was dissolved in dimethyl sulfoxide (Sigma Aldrich) at 2.5 mg/mL. Biotinylated HMM was obtained by incubating HMM with Biotin-NHS in a 1:10 molar ratio at room temperature for 10 min. The reaction was quenched by adding monosodium glutamate (Sigma Aldrich) in a 4:1 mass ratio (monosodium glutamate to HMM) into the mixture. The biotinylated HMM was then subsequently dialyzed against a buffer containing 5 mM NaH_2PO_4 (pH 6.5), 40 mM NaCl, 2 mM DTT, and 0.8 mM NaN₃.

F-actin length analysis

The gelsolin-mediated fluorescent actin filaments were imaged using total internal reflection microscopy (TIRF; DMi8 S module Infinity TIRF, Leica) with an HC PL APO 100x/1.47 CORR TIRF oil immersion objective. The filaments were imaged in a glass chamber that consisted of cover-slips (Carl Roth) fixed to microscope slides (Carl Roth) by 4-layer parafilm. The cover-slips were coated with a 0.1% nitrocellulose solution, which was made by diluting a 2% solution (Electron Microscopy Sciences) in amyl acetate (Roth), and were left to dry overnight. HMM was diluted in assay buffer (pH 7.4) containing 25 mM Imidazole, 4 mM $MgCl₂$, 25 mM KCl, and 1 mM EGTA. The glass chamber was briefly incubated with the HMM dilution and the surfaces were then passivated with a BSA solution (10 mg/mL dissolved in assay buffer), before the addition of fluorescent-labeled F-actin diluted in assay buffer. The ATP-free conditions allow filaments to bind to HMM in the rigor state. The filaments' length was determined using Ridge Defection in Fiji/ImageJ which exhibiting a log-normal distribution and having the mode length $L = 0.55 \mu m$ (Supplementary Figure 1).

Calculation of F-actin surface density and surface packing fraction

The surface density of F-actin on the inner leaflet of the vesicle was calculated based on the assumption that all the encapsulated F-actin were bound to the membrane. The surface density ρ was obtained by dividing the number of F-actin, $N_{F-actin}$, inside the vesicle by the surface area of the vesicle such that

$$
\rho = \frac{N_{F-actin}}{4\pi R^2} = \frac{\frac{4}{3}\pi R^3 \cdot c_A \cdot N_0 \cdot \frac{L_{G-actin}}{L}}{4\pi R^2} = \frac{R \cdot c_A \cdot N_0 \cdot L_{G-actin}}{3 \cdot L},\tag{1}
$$

where R is the vesicle radius, c_A is the encapsulated actin concentration, N_0 is the Avogadro number, $L_{G-actin}$ is the length of each G-actin occupied in an F-actin, and L is the F-actin length. By applying $R = 18 \mu m$ (Supplementary Figure 3), $L_{G-actin} = 2.73$ nm [1], and $L = 0.55 \mu$ m, we obtained $\rho \approx 1.8, 2.7, 5.3,$ and 10.7 filaments/ μ m² for $c_A = 100, 150, 300,$ and 600 nM, respectively.

The surface packing fraction ϕ was calculated that $\phi = N_{F-actin}Lw/4\pi R^2 = \rho Lw$, where $w = 7$ nm is the width of F-actin. We obtained $\phi = 0.007, 0.01, 0.02,$ and 0.04 for $c_A = 100, 150, 300,$ and 600 nM, respectively.

Supplementary Figure 1. Gelsolin-mediated fluorescent actin filaments. a, TIRF image of the gelsolin-mediated fluorescent actin filaments. Scale bar, 5 μ m. b, Distribution of the F-actin length, $N = 3745$.

Supplementary Figure 2. Influence of streptavidin-biotin-interaction components. Fluorescence images (zprojections) of vesicles with encapsulated actin concentration = 600 nM, but without one or two of the streptavidinbiotin-interaction components after 60 min of production. In all cases, no collective pattern is observed. Scale bars, 20 $\mu \text{m}.$

Supplementary Figure 3. Active actin vesicle size. Distribution of the radius of active actin vesicles, $N = 492$

supplementally right 4. Vesicle size vs. polar patterns. α d, the radii of vesicles at 100 nm (α) , 100 nm (β) , 000 nM (α) for each observed polar pattern. The bin width is 2.5 μ m. Supplementary Figure 4. Vesicle size vs. polar patterns. a–d, The radii of vesicles at 100 nM (a), 150 nM (b), 300

Supplementary Figure 5. Mean-square displacement (MSD) of globally-jammed patt $+1/2$ defects in a globally-jammed vesicle. Dashed line indicates diffusive behavior (MSD $\propto \tau$). Supplementary Figure 5. Mean-square displacement (MSD) of globally-jammed patterns. MSD of the four

Supplementary Figure 6. Manuel tracking and optical flow. The instantaneous speed of a stream obtained by manual tracking (red) is consistent with the one obtained by optical flow method (black). Error bars represent the standard deviations of the velocity extracted from optical flow.

[∗] These authors contributed equally † abausch@mytum.de

-
- [1] Egelman, E. H., Francis, N. & DeRosier, D. J. F-actin is a helix with a random variable twist. Nature 298, 131–135 (1982).