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Supplementary Methods. 
 

Genome assembly. 

Sequencing reads from publicly available N. gonorrhoeae datasets (Supplementary Table 3) were 
downloaded from the European Nucleotide Archive. Quality of reads was assessed using FastQC 
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Reads were mapped to the NCCP11945 
(NC_011035.1) reference genome using BWA-MEM v 0.7.171.  Duplicate reads were marked with Picard 
v 2.20.1 (https://broadinstitute.github.io/picard/), and reads were sorted with samtools v X. The quality of 
mapped reads was assessed using Qualimap’s bamqc v 2.2.12. We used Pilon v 1.233 to call variants 
(minimum mapping quality 20 and minimum coverage of 10). To create pseudogenomes, we replaced the 
reference allele with high quality variant calls (at least 90% of reads supporting allele). Positions called as 
deletions by Pilon were replace with a gap character (‘-‘), and positions with low coverage or an 
indeterminant allele were replaced with an N.  

Sequencing reads were additionally assembled using SPAdes v 3.12.04. Assemblies were corrected by 
mapping reads to contigs using the --careful option. Contigs less than 500bp long or with less than 10X 
coverage were removed from assemblies. Quality of assemblies was assessed using QUAST v 5.0.2 5 
(Supplementary Figure 1B). 
 
Accessions and quality control statistics are available at github.com/gradlab/pcn_tet_susceptibility_gwas 
in the data/prediction/ directory for the global dataset and data/validation for the GISP 20186 dataset. 

Identification of known resistance associated alleles. 

Alleles previously described to be associated with resistance (Supplementary Table 1) were identified in 
pseudogenomes or de novo assemblies. Single nucleotide variants occurring in the background of N. 
gonorrhoeae alleles were called using Pilon variant calls (e.g. genomic position 2031479 for rpsJ codon 
57). penA alleles from assemblies were typed according to the naming scheme and mosaic designations 
used by the NG-STAR database (last accessed March 2, 2021)7, requiring 100% identity to be matched to 
a specific allele. The resistance associated insertion in penA at codon 345 was identified using blastn from 
BLAST+ v 2.9.08 of de novo assemblies with alleles from FA1090 (NC_002946.2) serving at the wild 
type reference. The presence of plasmid-mediated resistance elements (blaTEM and tetM) were also 
identified using blastn of de novo assemblies; the query sequences were NG_068038.1 and MG874353.1 
accession, respectively. 

The presence of resistance alleles are available at github.com/gradlab/pcn_tet_susceptibility_gwas in the 
data/prediction/ directory for the global dataset and data/validation for the GISP 20186 dataset. 

Genome wide association studies. 

As in previous studies9,10, we used a linear mixed model based GWAS implemented in pyseer v 1.3.611 to 
test for associations of variants with penicillin and tetracycline MICs. 

Model. 
𝑌𝑌 ∼  Wα +  Xβ +  u +  ϵ 

𝑢𝑢 ∼ 𝑁𝑁�0,σ𝑔𝑔2𝐾𝐾�  

ϵ ∼ 𝑁𝑁(0,σ𝑒𝑒2𝐼𝐼) 
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Y is a vector of MICs. W and α are the covariate matrix and their fixed effects, respectively. X is a vector 
representing the presence of the unitig or kmer, and β is the fixed effect for the genetic variant. To control 
for population structure, u is a random effect parameterized with K (a similarity matrix) and σ𝑔𝑔2 (additive 
genetic variance). Non-genetic effects are modeled by the random effect ϵ. 

Phenotype.  

For 2116 isolates with available MICs, TET MICs were reported as ≤ 4 µg/mL or ≤ 8 µg/mL. These were 
excluded since we could not classify them as susceptible or resistant. Isolates with PCN MICs reported as 
‘>4’ or ‘>2’ were not included in the GWAS analysis since the precise MIC was unknown. 6220 isolates 
were included in the penicillin GWAS, and 3453 isolates were included in the tetracycline GWAS. For all 
other datasets, when reported MICs contained ‘>’ or ‘<’ symbols, these symbols were stripped and the 
numerical value was used as the MIC for GWAS. MICs were log2-transformed.  

Unitig and kmer calling.  
Unitigs and kmers were generated from de novo assemblies to represent the genetic variation present 
within this dataset. Unitigs were generated from a compressed de Bruijn graph with unitig-counter v 1.1.0 
(https://github.com/johnlees/unitig-counter), based on the approach used in DBGWAS12. Kmers were 
generated using fsm-lite v 1.0 (https://github.com/nvalimak/fsm-lite). Unitigs and kmers present in 1%-
99% of the dataset were tested for association with the phenotype. 

Population structure.  
We used an alignment of pseudogenomes for phylogenetic analysis. To identify recombinant regions and 
estimate a recombination free phylogeny, we used Gubbins v 2.4.113 and RAxML v 8.2.1214. A similarity 
matrix describing the relatedness of isolates was generated flag from the phylogeny using 
phylogeny_distance.py from pyseer with the --lmm flag.  

Covariates.  
We included the country of isolation and original dataset as covariates in the GWAS to correct for 
geographic differences in MIC protocols and study specific sequencing artifacts. We also included the 
presence of plasmid-mediated resistance determinants encoded as 0 for absent and 1 for present as 
covariates. 

Significance testing. 
The significance of variants was assessed using a likelihood ratio test. We additionally corrected for 
multiple hypothesis testing using a Bonferroni correction based on the number of unique 
presence/absence patterns for unitigs or kmers obtained from count_patterns.py from pyseer. The 
threshold for significance in the penicillin GWAS was 3.13 x 10-7 (0.05/159609) for unitigs and 3.49 x 10-

8 (0.05/1433207) for kmers, and the threshold for significance in the tetracycline GWAS was 3.41 x 10-7 
(0.05/146496) for unitigs and 4.44 x 10-8 (0.05/1125008) for kmers. 

Annotation of significant variants. 
Unitigs and kmers were mapped to the WHO_N reference genome (GCA_900087725.2) as this genome 
contains both the tetM-encoding conjugative plasmid and the blaTEM-encoding plasmid with pyseer’s 
annotate_hits_pyseer. The output was used to generate Manhattan plots in R v 4.0.315 with ggplot216. We 
considered significant unitigs and kmers that uniquely mapped to one location in the genome for further 
analyses.  

To visualize variation between susceptibility associated unitigs and the homologous region in resistant 
isolates, we aligned penA_01, which is present in WHO_F (NZ_LT591897.1) to the equivalent penA 
region in isolates encoding the insertion at codon 345 (WHO_N, NZ_LT591910.1), mosaic penA 10 
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(WHO_K, NZ_LT591908.1 ), mosaic penA 34 (WHO_Y, NZ_LT592161.1), and mosaic penA 60 
(FC428, NZ_AP018377.1). We also aligned the tetracycline susceptibility associated unitig, which is 
present in WHO_F to the equivalent rpsJ region in WHO_N. These alignments were visualized with 
Jalview 2.11.1.417.   
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Supplementary Figures. 
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Supplementary Tables. 
 

Supplementary Table 1. Previously described penicillin and tetracycline resistance markers. 

Antibiotic Gene Variants 
Penicillin blaTEM

41  
ponA L421P42 
penA Mosaic alleles43 

345ins44,45 
A501V/P46 
G545S/I312M/V316T47 

Tetracycline tetM48  
rpsJ V57M49 

Both porB G120K, A121D/N50,51 
mtr operon promoter52 

mtrR A39T, G45D53 
 

 

Supplementary Table 2. Sensitivity and specificity of plasmid-associated markers for predicting PCN and 
TET susceptibility with 95% confidence interval. 

Genotype Phenotype Sensitivity (95% CI) Specificity (95% CI) 
Absence of blaTEM PCN susceptible 

(MIC ≤ 0.06 µg/mL) 
98.5% (98.2% - 98.8%) 13.9% (12.9% - 14.8%) 

PCN non-resistant 
(MIC < 2 µg/mL) 

98.3% (97.9% - 98.6%) 51.8% (50.4% - 53.1%) 

Absence of tetM TET susceptible 
(MIC ≤ 0.25 µg/mL) 

99.4% (99.0% - 99.7%) 23.4% (21.4% - 25.4%) 

TET non-resistant 
(MIC < 2 µg/mL) 

99.5% (99.1% - 99.8%) 40.0% (36.7% - 41.4%) 
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Supplementary Table 3. Prevalence of susceptibility associated genotypes across datasets. 

The susceptible genotype for PCN is the presence of penA_01 and the absence of blaTEM. The susceptible 
genotype for TET is the presence of wild-type rpsJ codon 57 and the absence of tetM. Non-susceptible genotypes 
include all other genotypes. 

Dataset PCN genotypes TET genotypes 
Susceptible Non-susceptible Susceptible Non-susceptible 

Alfsnes et al. 2020 18 18 (1.9%) 906 (98.1%) 222 (24.0%) 702 (76.0%) 
Buckley et al. 2018 19 0 (0.0%) 93 (100.0%) 93 (100.0%) 0 (0.0%) 
Cehovin et al. 2018 20 0 (0.0%) 103 (100.0%) 0 (0.0%) 103 (100.0%) 
De Silva et al. 2016 21 35 (2.5%) 1365 (97.5%) 219 (15.6%) 1181 (84.4%) 
Demczuk et al. 2015 22 7 (6.6%) 99 (93.4%) 20 (18.9%) 86 (81.1%) 
Demczuk et al. 2016 23 3 (1.5%) 193 (98.5%) 1 (0.5%) 195 (99.5%) 
Eyre et al. 2017 24 21 (9.1%) 210 (90.9%) 33 (14.3%) 198 (85.7%) 
Ezewudo et al. 2015 25 3 (5.6%) 51 (94.4%) 8 (14.8%) 46 (85.2%) 
Fifer et al. 2018 26 0 (0.0%) 50 (100.0%) 0 (0.0%) 50 (100.0%) 
Grad et al. 2014, 2016 27,28 11 (1.0%) 1084 (99.0%) 56 (5.1%) 1039 (94.9%) 
Harris et al. 2018 29 54 (5.3%) 960 (94.7%) 119 (11.7%) 895 (88.3%) 
Kwong et al. 2017 30 0 (0.0%) 94 (100.0%) 2 (2.1%) 92 (97.9%) 
Lan et al. 2020 31 2 (0.9%) 226 (99.1%) 2 (0.9%) 226 (99.1%) 
Lee et al. 2018 32 4 (1.0%) 393 (99.0%) 119 (30.0%) 278 (70.0%) 
Mortimer et al. 2020 33 34 (3.8%) 862 (96.2%) 129 (14.4%) 767 (85.6%) 
Peng et al. 2019 34 0 (0.0%) 421 (100.0%) 0 (0.0%) 421 (100.0%) 
Ryan et al. 2018 35 0 (0.0%) 39 (100.0%) 1 (2.6%) 38 (97.4%) 
Sánchez-Busó et al. 2018 36 30 (7.9%) 348 (92.1%) 36 (9.5%) 342 (90.5%) 
Thomas et al. 2019 37 7 (1.1%) 606 (98.9%) 59 (9.6%) 554 (90.4%) 
Town et al. 2020 38 13 (1.0%) 1259 (99.0%) 257 (20.2%) 1016 (79.8%) 
Williamson et al. 2019 39 6 (0.3%) 2175 (99.7%) 506 (23.2%) 1675 (76.8%) 
Yahara et al. 2018 40 4 (1.5%) 256 (98.5%) 36 (13.8%) 224 (86.2%) 
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Supplementary Table 4. Counts for true positives, false positives, true negatives, and false negatives in the 
global and validation datasets. 

Genotype Phenotype Global Dataset Validation Dataset  
(GISP 20186) 

True 
Positives 

False 
Positives 

True 
Negatives 

False 
Negatives 

True 
Positives 

False 
Positives 

True 
Negatives 

False 
Negatives 

penA_01 + 
absence of 
blaTEM 

PCN 
susceptible 
(MIC ≤ 0.06 
µg/mL) 

99 12 6653 171 42 15 1398 24 

PCN non-
resistant 
(MIC < 2 
µg/mL) 

111 0 1617 5207 57 0 190 1232 

rpsJ WT + 
absence of 
tetM 

TET 
susceptible 
(MIC ≤ 0.25 
µg/mL) 

409 88 3062 52 183 62 1181 51 

TET non-
resistant 
(MIC < 2 
µg/mL) 

491 6 1869 1245 243 2 378 854 
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Supplementary Table 5. Number and percentage of GISP isolates reported from 2018 encoding susceptibility 
associated genotypes by sexual behavior and race/ethnicity. Dash indicates that no isolates were collected from 
the demographic group indicated. The susceptible genotype for PCN is the presence of penA_01 and the absence of 
blaTEM. The susceptible genotype for TET is the presence of wild-type rpsJ codon 57 and the absence of tetM. 

 PCN Susceptible Genotype TET Susceptible Genotype 
 MSM MSMW MSW MSM MSMW MSW 
American Indian 0 (0.0%) - 0 (0.0%) 0 (0.0%) - 2 (40.0%) 
Asian 0 (0.0%) 2 (5.1%) 1 (5.0%) 1 (5.3%) 0 (0.0%) 5 (25.0%) 
Black 20 (5.0%) 0 (0.0%) 33 (5.7%) 13 (10.8%) 3 (7.7%) 32 (22.9%) 
Hispanic  1 (0.9%) 0 (0.0%) 1 (0.9%) 13 (11.8%) 1 (7.7%) 13 (11.6%) 
Multi-racial 0 (0.0%) 0 (0.0%) 2 (10.0%) 1 (6.25%) 0 (0.0%) 4 (20.0%) 
Native Hawaiian 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (11.1%) 0 (0.0%) 0 (0.0%) 
White 0 (0.0%) 0 (0.0%) 7 (6.8%) 14 (8.0%) 3 (11.5%) 17 (16.5%) 
p-value (χ2 test) 0.073  0.96 0.52  0.19 
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