SUPPLEMENTAL FIGURES

AD vs Control

A. Superficial Capillary Plexus Vessel Density: Fovea (<1.0 mm to the Fovea)

Study	N	AD Mean	SD	N	Contro Mean							Cohen's d with 95% Cl	Weight (%)
Lahme et al. (2018)	36	29.4	5.72	38	31.06	5.35					_	-0.30 [-0.76, 0.16]	22.39
Bulut et al. (2018)	26	29.04	7.17	26	34.8	6.76			I	_		-0.83 [-1.39, -0.26]	17.05
Wu et al. (2020)	28	49.56	2.81	33	50.47	2.72		-				-0.33 [-0.84, 0.18]	19.76
O'Bryhim et al. (2021)	16	29.83	4.78	19	33.27	4.96						-0.71 [-1.39, -0.02]	12.91
Wang et al. (2021)	62	15.89	5.34	49	16.18	5.27			-	_	<u> </u>	-0.05 [-0.43, 0.32]	27.90
Overall												-0.38 [-0.66, -0.10]	
Heterogeneity: $\tau^2 = 0.04$	4, I ² =	= 36.579	%, H ² :	= 1.5	8								
Test of $\theta_i = \theta_j$: Q(4) = 6.	19, p	o = 0.19											
Test of θ = 0: z = -2.65,	p =	0.01											
						-1.	5	-1	5	()	.5	
Devidence offender DEML in													

Random-effects REML model

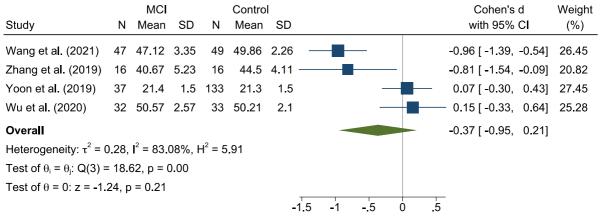
B. Superficial Capillary Plexus Vessel Density: Parafovea region (1.0–3.0 mm to the Fovea)

Study	N	AD Mean	SD	N	Contro Mean	-			Cohen's d with 95% Cl	Weight (%)
Haan et al. (2019)	48	17.3	1.5	38	17.4	1.2			-0.07 [-0.50, 0.35]	15.97
Lahme et al. (2018)	36	50.93	4.05	38	53.55	3.31	_		-0.71 [-1.18, -0.24]	14.27
Bulut et al. (2018)	26	47.96	4.86	26	51.12	4.1			-0.70 [-1.26, -0.14]	11.42
Yoon et al. (2019)	39	20.1	2.3	133	21.3	1.5			-0.70 [-1.07, -0.34]	18.69
Wu et al. (2020)	28	49.37	2.36	33	50.21	2.1			-0.38 [-0.89, 0.13]	12.97
O'Bryhim et al. (2021)	16	50.17	3.41	19	49.71	5.17	·		0.10 [-0.56, 0.77]	8.94
Wang et al. (2021)	62	47.7	3.76	49	49.86	2.26			-0.68 [-1.06, -0.29]	17.73
Overall							•		-0.48 [-0.71, -0.25]	
Heterogeneity: $\tau^2 = 0.04$	4, I ² =	= 41.55	%, H ² =	= 1.71						
Test of $\theta_i = \theta_j$: Q(6) = 10	D.51,	p = 0.1	0							
Test of θ = 0: z = -4.12,	p =	0.00								
							-1 0)	つ 1	

Random-effects REML model

Figure S1. Difference in the superficial capillary plexus vessel density between subjects with Alzheimer's Disease (AD) and healthy controls

The meta-analyses were conducted with a random-effects model. Horizontal bar indicates 95% confidence intervals (CI), and the size of the squares denotes the weight attributed to each article. The diamonds represent the standardized mean differences with the width showing the 95% CI.


MCI vs Control

A. Superficial Capillary Plexus Vessel Density: Fovea (<1.0 mm to the Fovea)

Study	N	MCI Mean		N	Contro Mean			Cohen's d Weight with 95% CI (%)
Shin et al. (2021)	40	5.63	3.9	37	7.8	3.4		-0.59 [-1.05, -0.13] 32.12
Wang et al. (2021)	47	14.09	5.21	49	16.18	5.27		-0.40 [-0.80, 0.01] 38.86
Wu et al. (2020)	32	50.37	2.33	33	50.47	2.72		-0.04 [-0.53, 0.45] 29.02
Overall Heterogeneity: τ^2 = Test of $\theta_i = \theta_j$: Q(2) = Test of θ = 0: z = -2.	= 2.6	9, p = 0	.26	H ² =	1.26		-15 0	-0.36 [-0.65, -0.07] 5

Random-effects REML model

B. Superficial Capillary Plexus Vessel Density: Parafovea region (1.0–3.0 mm to the Fovea)

Random-effects REML model

Figure S2. Difference in the superficial capillary plexus vessel density between subjects with mild cognitive impairment (MCI) and healthy controls

The meta-analyses were conducted with a random-effects model. Horizontal bar indicates 95% confidence intervals (CI), and the size of the squares denotes the weight attributed to each article. The diamonds represent the standardized mean differences with the width showing the 95% CI.

AD vs MCI

A. Superficial Capillary Plexus Vessel Density: Fovea (<1.0 mm to the Fovea)

Study	N	AD Mean	SD	N	MCI Mean	SD				Cohen's d V with 95% CI	Veight (%)
Wu et al. (2020)	28	49.56	2.81	32	50.37	2.33				-0.32 [-0.83, 0.19] 4	46.54
Wang et al. (2021)	62	15.89	5.34	47	14.09	5.21				0.34 [-0.04, 0.72] 5	53.46
Overall										0.04 [-0.61, 0.68]	
Heterogeneity: τ^2 =	0.16,	I ² = 75.	46%,	$H^2 =$	4.08						
Test of $\theta_i = \theta_j$: Q(1)	= 4.0	8, p = 0	.04								
Test of θ = 0: z = 0.	11, p	= 0.91									
						-1	5	Ó	.5	1	
Random-effects REM	1L mo	odel									

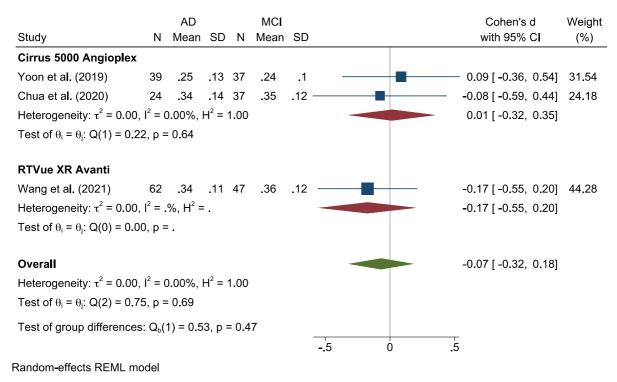
B. Superficial Capillary Plexus Vessel Density: Parafovea region (1.0–3.0 mm to the Fovea)

Study	N	AD Mean	SD	N	MCI Mean	SD		Cohen's d V with 95% CI	Veight (%)
Yoon et al. (2019)	39	20.1	2.3	37	21.4	1.5		-0.67 [-1.13, -0.20]	32.95
Wu et al. (2020)	28	49.37	2.36	32	50.57	2.57	_	-0.48 [-1.00, 0.03] 3	30.97
Wang et al. (2021)	62	47.7	3.76	47	47.12	3.35		0.16 [-0.22, 0.54] 3	36.08
Overall								-0.31 [-0.82, 0.20]	
Heterogeneity: τ^2 =	0.15,	$ ^2 = 74.$	42%,	H ² =	3.91				
Test of $\theta_i = \theta_j$: Q(2) =	= 8.4	3, p = 0	.01						
Test of θ = 0: z = -1.	19, p	o = 0.23							
							-15 0	.5	

Random-effects REML model

Figure S3. Difference in the superficial capillary plexus vessel density between subjects with Alzheimer's Disease (AD) and mild cognitive impairment (MCI)

The meta-analyses were conducted with a random-effects model. Horizontal bar indicates 95% confidence intervals (CI), and the size of the squares denotes the weight attributed to each article. The diamonds represent the standardized mean differences with the width showing the 95% CI.


Foveal Avascular Zone Area: AD vs Control

		AD			Contro	I			Cohen's d	Weight
Study	Ν	Mean	SD	Ν	Mean	SD			with 95% CI	(%)
Cirrus 5000 Angioplex										
Haan et al. (2019)	48	.24	.06	38	.26	.08			-0.29 [-0.72, 0.14]	13.50
Yoon et al. (2019)	39	.25	.13	133	.25	.11			0.00 [-0.36, 0.36]	14.02
Chua et al. (2020)	24	.34	.14	29	.31	.12			0.23 [-0.31, 0.77]	12.57
Heterogeneity: $\tau^2 = 0.00$, I ² =	0.80%, I	$H^2 = 1$.01					-0.05 [-0.29, 0.20]	
Test of $\theta_i = \theta_j$: Q(2) = 2.3	30, p =	= 0.32								
RTVue XR Avanti										
Bulut et al. (2018)	26	.47	.18	26	.33	.08		·	1.01 [0.43, 1.58]	12.28
Zabel et al. (2019)	27	.32	.09	27	.21	.07			— 1.36 [0.77, 1.96]	12.14
O'Bryhim et al. (2021)	16	.368	.077	19	.272	.083		_	— 1.20 [0.47, 1.92]	11.02
O'Bryhim et al. (2018)	14	.364	.095	16	.275	.06			— 1.14 [0.36, 1.91]	10.58
Wang et al. (2021)	62	.34	.11	49	.33	.12			0.09 [-0.29, 0.46]	13.89
Heterogeneity: $\tau^2 = 0.24$, I ² =	73.34%	H ² = 3	3.75					0.91 [0.41, 1.42]	
Test of $\theta_i = \theta_j$: Q(4) = 19	.21, p	= 0.00								
Overall									0.54 [0.09, 0.99]	
Heterogeneity: $\tau^2 = 0.34$	$ ^{2} = 3$	84.07%	$H^{2} = 0$	6.28						
Test of $\theta_i = \theta_j$: Q(7) = 39	.73, p	= 0.00								
Test of group differences	s: Q₀(1) = 11.	15, p =	0.00						
						י י_	(0 1	2	
Bandom offecto BEML m	odol									

Random-effects REML model

Foveal Avascular Zone Area: MCI vs Control

Study	N	MCI Mean	SD	N	Contro Mean			Cohen's d with 95% Cl	Weight (%)
Cirrus 5000 Angioplex	11	wear	00		wear	00			(70)
• ·		~ .							
Yoon et al. (2019)	37	.24	.1	133	.25	.11		-0.09 [-0.46, 0.27]	20.51
Chua et al. (2020)	37	.35	.12	29	.31	.12		0.33 [-0.16, 0.82]	16.49
Shin et al. (2021)	40	.31	.11	37	.27	.09		0.40 [-0.05, 0.85]	17.65
Heterogeneity: $\tau^2 = 0.04$	$ ^{2} = 4$	42.28%	$H^{2} =$	1.73			-	0.18 [-0.14, 0.51]	
Test of $\theta_i = \theta_j$: Q(2) = 3.3	8, p =	= 0.18							
RTVue XR Avanti									
Zhang et al. (2019)	16	.247	.092	16	.271	.135	_	-0.21 [-0.90, 0.49]	11.41
Criscuolo et al. (2020)	27	.28	.12	29	.19	.06		0.96 [0.41, 1.51]	14.69
Wang et al. (2021)	47	.36	.12	49	.33	.12		0.25 [-0.15, 0.65]	19.25
Heterogeneity: $\tau^2 = 0.23$	$ ^2 = 7$	75.41%	$H^{2} = 4$	4.07				0.35 [-0.28, 0.98]	
Test of $\theta_i = \theta_j$: Q(2) = 7.3	6, p =	= 0.03							
Overall							•	0.27 [-0.03, 0.57]	
Heterogeneity: $\tau^2 = 0.08$	$ ^2 = !$	58 20%	$H^{2} = 2$	2 39					
Test of $\theta_i = \theta_j$: Q(5) = 11.									
Test of group differences	s: Q _b (1) = 0.2	2, p =	0.64					
						_ _	1 0 1	2	

Foveal Avascular Zone Area: AD vs MCI

Figure S4. Subgroup analyses comparing studies using Cirrus 5000 Angioplex and RTVue XR Avanti

The meta-analyses were conducted with a random-effects model. Horizontal bar indicates 95% confidence intervals (CI), and the size of the squares denotes the weight attributed to each article. The diamonds represent the standardized mean differences with the width showing the 95% CI. Abbreviation: AD = Alzheimer's Disease; MCI = Mild Cognitive Impairment

Foveal Avascular Zone Area: AD vs Control

Study	N	AD Mean	SD	N	Contro Mean	I SD		Cohen's d with 95% Cl	Weight (%)
3 X 3		woun	00		moun				(70)
	20	05	40	400	05	44			44.00
Yoon et al. (2019)	39	.25		133	.25	.11		0.00 [-0.36, 0.36]	
Chua et al. (2020)	24	.34	.14	29	.31	.12		0.23 [-0.31, 0.77]	12.57
Wang et al. (2021)	62	.34	.11	49	.33	.12		0.09 [-0.29, 0.46]	13.89
Heterogeneity: $\tau^2 = 0.0$	0, I ² =	= 0.00%	5, H ² =	1.00			•	0.08 [-0.16, 0.31]	
Test of $\theta_i = \theta_j$: Q(2) = 0	.49, p	o = 0.78							
6 X 6									
Haan et al. (2019)	48	.24	.06	38	.26	.08		-0.29 [-0.72, 0.14]	13.50
Bulut et al. (2018)	26	.47	.18	26	.33	.08		- 1.01 [0.43, 1.58]	12.28
Zabel et al. (2019)	27	.32	.09	27	.21	.07		— 1.36 [0.77, 1.96]	12.14
O'Bryhim et al. (2021)	16	.368	.077	19	.272	.083		— 1.20 [0.47, 1.92]	11.02
Heterogeneity: $\tau^2 = 0.5$	3, I ² =	= 86.42	%, H ² :	= 7.37	,			0.79 [0.02, 1.56]	
Test of $\theta_i = \theta_j$: Q(3) = 2	7.42,	p = 0.0	0						
Overall								0.47 [-0.01, 0.95]	
Heterogeneity: $\tau^2 = 0.3$	5, I ² =	= 85.39	%, H ² :	= 6.85	i				
Test of $\theta_i = \theta_j$: Q(6) = 3	5.30,	p = 0.0	0						
Test of group difference	es: Q	₀(1) = 3	.04, p	= 0.08	3				
						י ^_	0 1	2	

Random-effects REML model

Foveal Avascular Zone Area: MCI vs Control

		MCI			Control			Cohen's d	Weight
Study	Ν	Mean	SD	Ν	Mean	SD		with 95% Cl	(%)
3 X 3									
Zhang et al. (2019)	16	.247	.092	16	.271	.135		-0.21 [-0.90, 0.49]	11.41
Yoon et al. (2019)	37	.24	.1	133	.25	.11		-0.09 [-0.46, 0.27]	20.51
Chua et al. (2020)	37	.35	.12	29	.31	.12		0.33 [-0.16, 0.82]	16.49
Wang et al. (2021)	47	.36	.12	49	.33	.12		0.25 [-0.15, 0.65]	19.25
Heterogeneity: $\tau^2 = 0.01$,	 ² =	11.079	/6, H ² =	= 1.12			•	0.09 [-0.15, 0.33]	
Test of $\theta_i = \theta_j$: Q(3) = 3.23	3, p	= 0.36							
6 X 6									
Shin et al. (2021)	40	.31	.11	37	.27	.09		0.40 [-0.05, 0.85]	17.65
Criscuolo et al. (2020)	27	.28	.12	29	.19	.06		0.96 [0.41, 1.51]	14.69
Heterogeneity: τ^2 = 0.09,	I ² =	58.109	%, Η ² =	= 2.39				0.65 [0.10, 1.20]	
Test of $\theta_i = \theta_j$: Q(1) = 2.39	9, p	= 0.12							
Overall							•	0.27 [-0.03, 0.57]	
Heterogeneity: $\tau^2 = 0.08$,	 ² =	58.20%	%, H ² =	= 2.39					
Test of $\theta_i = \theta_j$: Q(5) = 11.8	89,	p = 0.04	4						
Test of group differences	s: Q	_o (1) = 3	.37, p	= 0.07	7				
						-	1 0 1	2	

Superficial Capillary Plexus Vessel Density: AD vs Control

Chudu	NI	AD	SD	N	Contro				Cohen's d	Weight
Study	N	Mean	50	Ν	Mean	SD			with 95% CI	(%)
3 X 3							_			
Lahme et al. (2018)	36				51.64				-0.80 [-1.27, -0.32]	10.68
Yoon et al. (2019)	39	19	2.3	133	20.2	1.6			-0.67 [-1.04, -0.31]	13.43
Chua et al. (2020)	24	14.78	1.14	29	15.66	.96			-0.84 [-1.41, -0.28]	8.83
Querques et al. (2019)	12	40.66	2.36	32	40.92	1.96			-0.13 [-0.79, 0.54]	7.20
Wang et al. (2021)	62	44.66	3.36	49	46.82	2.08			-0.75 [-1.14, -0.37]	12.80
Heterogeneity: $\tau^2 = 0.00$, I ² =	0.00%	, H ² = ⁻	1.00			•		-0.69 [-0.89, -0.48]	
Test of $\theta_i = \theta_j$: Q(4) = 3.3	36, p	= 0.50								
6 X 6										
Haan et al. (2019)	48	17.3	1.5	38	17.4	1.2		-	-0.07 [-0.50, 0.35]	11.82
Bulut et al. (2018)	26	45.5	3.85	26	48.67	3.29			-0.89 [-1.45, -0.32]	8.73
Zabel et al. (2019)	27	47.42	3.04	27	48.15	3.03		┣┼──	-0.24 [-0.78, 0.29]	9.38
Wu et al. (2020)	28	49.56	2.81	33	50.47	2.72		+	-0.33 [-0.84, 0.18]	9.96
O'Bryhim et al. (2021)	16	47	3.03	19	46.42	3.66		-	0.17 [-0.50, 0.84]	7.17
Heterogeneity: $\tau^2 = 0.05$, I ² =	41.63%	6, H ² =	1.71					-0.27 [-0.59, 0.04]	
Test of $\theta_i = \theta_i$: Q(4) = 7.0)6, p	= 0.13								
Overall							•		-0.48 [-0.70, -0.27]	
Heterogeneity: $\tau^2 = 0.06$, I ² =	48.21%	6, H ² =	1.93						
Test of $\theta_i = \theta_j$: Q(9) = 17	.51,	p = 0.04	1							
Test of group difference	s: Qt	o(1) = 4.	78, p =	= 0.03						
						-3	2 -1	0	<u> </u>	

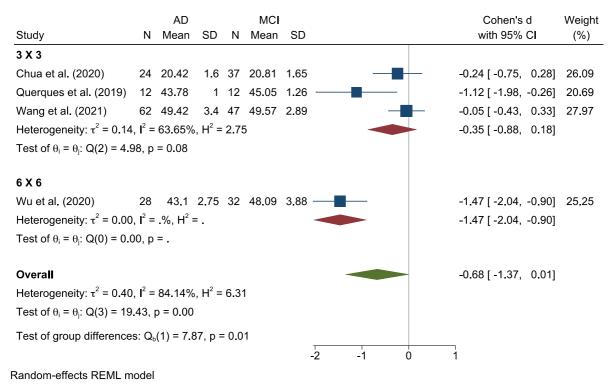
Superficial Capillary Plexus Vessel Density: MCI vs Control

Study	N	MCI Mean		N	Contro Mean	-		Cohen's d with 95% CI	Weight (%)
	IN	Mean	30		Mean	30			(70)
3 X 3									
Zhang et al. (2019)	16	40.67	5.23	16	44.5	4.11	·	-0.81 [-1.54, -0.09]	10.39
Yoon et al. (2019)	37	20.3	1.5	133	20.2	1.6		0.06 [-0.30, 0.43]	14.14
Chua et al. (2020)	37	14.94	1.02	29	15.66	.96		-0.72 [-1.23, -0.22]	12.73
Querques et al. (2019)	12	42 <u>.</u> 13	1.26	32	40.92	1.96	·	— 0.67 [-0.01, 1.35]	10.83
Wang et al. (2021)	47	44	3.07	49	46.82	2.08		-1.08 [-1.51, -0.65]	13.51
Heterogeneity: $\tau^2 = 0.42$, I ² =	86.55%	6, H ² =	7.44				-0.39 [-1.01, 0.23]	
Test of $\theta_i = \theta_j$: Q(4) = 28	.34,	p = 0.00)						
6 X 6									
Wu et al. (2020)	32	50.37	2.33	33	50.47	2.72		-0.04 [-0.53, 0.45]	12.89
Shin et al. (2021)	40	14	3.9	37	16.3	2.5		-0.70 [-1.16, -0.24]	13.17
Criscuolo et al. (2020)	27	44.92	5.04	29	48.12	4.53		-0.67 [-1.21, -0.13]	12.33
Heterogeneity: $\tau^2 = 0.08$, I ² =	55.06%	6, H ² =	2.23			-	-0.47 [-0.89, -0.04]	
Test of $\theta_i = \theta_j$: Q(2) = 4.4	46, p	= 0.11							
Overall							•	-0.42 [-0.81, -0.03]	
Heterogeneity: $\tau^2 = 0.24$, I ² =	79.29%	6, H ² =	4.83					
Test of $\theta_i = \theta_j$: Q(7) = 32	.94,	p = 0.00)						
Test of group difference	s: Q	₀ (1) = 0.	04, p =	= 0.84					
- ·		. ,				-	2 -1 0 1	_	
						-2	2 -1 0 1		

Random-effects REML model

Superficial Capillary Plexus Vessel Density: AD vs MCI

Study	N	AD Mean	SD	N	MCI Mean	SD			Cohen's d with 95% Cl	Weight (%)
3 X 3			-			-				(/
Yoon et al. (2019)	39	19	2.3	37	20.3	1.5			-0.67 [-1.13, -0.20] 22.08
Chua et al. (2020)	24	14.78	1.14	37	14.94	1.02		 	-0.15 [-0.66, 0.36] 20.29
Querques et al. (2019)	12	40.66	2.36	12	42.13	1.26		+	-0.78 [-1.61, 0.05] 12.15
Wang et al. (2021)	62	44.66	3.36	47	44	3.07	-		- 0.20 [-0.18, 0.58] 25.05
Heterogeneity: $\tau^2 = 0.15$	5, I ² =	68.57%	Ь́, Н ² =	3.18	3				-0.29 [-0.75, 0.17]
Test of $\theta_i = \theta_j$: Q(3) = 10	.14,	p = 0.02	2							
6 X 6										
Wu et al. (2020)	28	49.56	2.81	32	50.37	2.33		+-	-0.32 [-0.83, 0.19] 20.43
Heterogeneity: $\tau^2 = 0.00$), ² =	.%, H ²	=.						-0.32 [-0.83, 0.19]
Test of $\theta_i = \theta_j$: Q(0) = 0.0	00, p	=.								
Overall							-		-0.29 [-0.64, 0.07]
Heterogeneity: $\tau^2 = 0.10$), ² =	59.25%	Ь́, Н ² =	2.45	5					
Test of $\theta_i = \theta_j$: Q(4) = 10	.29,	p = 0.04	ļ							
Test of group difference	s: Q _t	,(1) = 0.	01, p =	= 0.9	4		-1.5 -15	0.5	-	
Random-effects REML m	nodel									


Deep Capillary Plexus Vessel Density: AD vs Control

		AD			Contro	ol				Cohen's d	Weight
Study	Ν	Mean	SD	Ν	Mean	SD				with 95% Cl	(%)
3 X 3											
Lahme et al. (2018)	36	55.35	3.16	38	56.72	2.21				-0.50 [-0.97, -0.04]	17.24
Chua et al. (2020)	24	20.42	1.6	29	21.54	1.55				-0.71 [-1.27, -0.15]	16.81
Querques et al. (2019)	12	43.78	1	32	45.77	1.77			-	-1.24 [-1.95, -0.53]	15.99
Wang et al. (2021)	62	49.42	3.4	49	50.89	2.86				0.46 [-0.84, -0.08]	17.56
Heterogeneity: $\tau^2 = 0.00$, I ² =	0.00%,	$H^2 = 2$	1.00					•	-0.61 [-0.86, -0.37]	
Test of $\theta_i = \theta_j$: Q(3) = 3.9	91, p	= 0.27									
6 X 6											
Zabel et al. (2019)	27	43.95	5.15	27	49.46	4.27		-	_	-1.16 [-1.74, -0.59]	16.71
Wu et al. (2020)	28	43.1	2.75	33	52.28	2.89 -		_		-3.25 [-4.01, -2.48]	15.69
Heterogeneity: τ^2 = 2.05, I^2 = 94.49%, H^2 = 18.14									-2.19 [-4.23, -0.15]		
Test of $\theta_i = \theta_j$: Q(1) = 18.14, p = 0.00											
Overall										-1.19 [-2.00, -0.38]	
Heterogeneity: τ^2 = 0.93, I ² = 92.38%, H ² = 13.12											
Test of $\theta_i = \theta_j$: Q(5) = 46.15, p = 0.00											
Test of group difference	s: Q	(1) = 2.2	26, p =	= 0.1	3						
			•			-4	-3	-2	-1	0	

Random-effects REML model

Deep Capillary Plexus Vessel Density: MCI vs Control

		MCI			Contro	ol		Cohen's d	Weight		
Study	Ν	Mean	SD	Ν	Mean	SD		with 95% Cl	(%)		
3 X 3											
Zhang et al. (2019)	16	49.51	4.66	16	50.05	2.75		-0.14 [-0.83, 0.55]	11.14		
Chua et al. (2020)	37	20.81	1.65	29	21.54	1.55		-0.45 [-0.95, 0.04]	15.27		
Querques et al. (2019)	12	45.05	1.26	32	45.77	1.77		-0.44 [-1.11, 0.23]	11.57		
Wang et al. (2021)	47	49.57	2.89	49	50.89	2.86		-0.46 [-0.86, -0.05]	17.37		
Heterogeneity: $\tau^2 = 0.00$, I ² =	•	-0.41 [-0.67, -0.15]								
Test of $\theta_i = \theta_j$: Q(3) = 0.67, p = 0.88											
6 X 6											
Wu et al. (2020)	32	48.09	3.88	33	52.28	2.89		-1.23 [-1.76, -0.70]	14.41		
Shin et al. (2021)	40	25.5	1.9	37	25.6	1.8		-0.05 [-0.50, 0.39]	16.35		
Criscuolo et al. (2020)	27	45.13	6.67	29	50.58	4.69		-0.95 [-1.50, -0.40]	13.90		
Heterogeneity: $\tau^2 = 0.32$, I ² =		-0.73 [-1.44, -0.02]								
Test of $\theta_i = \theta_j$: Q(2) = 12.53, p = 0.00											
Overall							•	-0.53 [-0.85, -0.22]			
Heterogeneity: $\tau^2 = 0.10$, $I^2 = 59.68\%$, $H^2 = 2.48$											
Test of $\theta_i = \theta_j$: Q(6) = 14	.71,	p = 0.02	2								
Test of group differences: $Q_b(1) = 0.70$, p = 0.40											
							2 -1 0	1			

Deep Capillary Plexus Vessel Density: AD vs MCI

Figure S5. Subgroup analyses comparing studies with macular scan size of 3x3 mm and 6x6 mm

The meta-analyses were conducted with a random-effects model. Horizontal bar indicates 95% confidence intervals (CI), and the size of the squares denotes the weight attributed to each article. The diamonds represent the standardized mean differences with the width showing the 95% CI. Abbreviation: AD = Alzheimer's Disease; MCI = Mild Cognitive Impairment