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eMethods 1. Cognitive and psychopathological phenotyping and factor analysis 
 
Recruitment, cognitive and clinical phenotyping in the PNC have been described previously1–3. 
Briefly, 9,498 individuals (8-21 years) were recruited from the Children’s Hospital of 
Philadelphia (CHOP) care network. All participants, or their parents or guardians provided 
informed consent, and minors provided assent. Study procedures were approved by IRBs of 
CHOP and University of Pennsylvania 

PNC participants were administered the Penn computerized neurocognitive battery (CNB), 
designed to measure domains of cognition that have been empirically linked to brain systems 4. 
Using an exploratory and confirmatory factor analytic approach detailed previously 3, individuals 
were scored on dimensions of “Executive-Complex Cognition”, “Memory”, and “Social 
cognition” accuracy – as well as measures of cognitive speed. Overall accuracy and speed were 
also estimated with unidimensional factor models using least-squares extraction. Prior work 
suggests that a combined Executive-Complex Cognition accuracy factor may be a good proxy 
for IQ, while overall accuracy may be a good proxy for ‘general intelligence’ (g-factor) 3. For 
consistency with prior work, all cognitive outcomes were age-normalized, using the residuals of 
a linear model with age as the predictor variable, and z-scored prior to further analysis. 

Participants were also administered the GOASSESS, a comprehensive computerized tool for 
structured evaluation of psychopathology domains based on the Kiddie Schedule for Affective 
Disorders and Schizophrenia (K-SADS) 1,5. From GOASSESS items, overall psychopathology 
was calculated using a bifactor model 6. This single continuous measure, sometimes referred to 
as the p-factor 7,8, represents liability to overall psychopathology in youths 9. Other domains of 
psychopathology were “Psychosis-Spectrum”, “Externalizing”, “Fear (phobias)” and “Mood-
Anxiety” factors. We also report results from a correlated traits model, which includes the same 
specific symptom domains without extracting an orthogonal measure of overall psychopathology 
6. Categorical determinations were also made using the GOASSESS to identify individuals 
meeting criteria for ADHD, depression, anxiety, or psychosis spectrum 1,10. For consistency with 
prior work, all psychopathology outcomes were age-normalized, using the residuals of a linear 
model with age as the predictor variable, and z-scored prior to further analysis. 

As previously reported1,3,6, cognitive and psychopathological measures correlate non-trivially. 
Our factor analytic approach was designed to capture cognitive and behavioral domains 
supported by psychological theory and prior literature, rather than to constrain factors to be 
orthogonal. We note that it is common to investigate multiple cognitive or psychopathological 
outcome measures that are not expected to be independent of one another, which reflects the 
reality of high correlation among domains of cognitive function as well as psychiatric co-
morbidity 11. False Discovery Rate (FDR) correction for multiple comparisons across multiple 
outcome measures that are not independent is expected to be conservative, i.e., this procedure is 
not expected to inflate the false discovery rate 12. However, it is important to take these points 
into consideration when interpreting results; it is not justified to infer that reported associations 
with different cognitive and psychopathological outcomes are necessarily independent. As 
discussed above, an exception is the bifactor model of psychopathology domains, which models 
psychopathology factors orthogonally by accounting for an overall psychopathology factor that 
“absorbs” the inter-factor correlations. Thus for example, the overall psychopathology factor is 
orthogonal to the psychosis factor estimated from the bifactor model. This additional step is 
taken to justify the inference that, for example, an effect on psychosis is not attributable to an 
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effect on overall psychopathology. Note that while a bifactor model of neurocognition was 
estimated (see REF3), scores were not generated from this model due to poor determinacy 13. The 
neurocognitive scores are therefore limited to the correlated-traits model, in which they were 
well-determined. 
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eMethods 2. Quantification of environmental factors 
 
Environmental variables were quantified from two principal sources. First, an exploratory factor 
analysis identified a cumulative socioeconomic environment factor for each individual based on 
neighborhood-level data (including income levels, education levels, percent female residents, 
etc.) as previously described 14. Second, an individual-level measure of trauma exposure was 
derived as a total count of traumatic experiences from a list of nine items included in the 
GOASSESS, including experiencing a natural disaster or bad accident, witnessing another 
person killed or badly beaten, witnessing a dead body, being concerned that a close contact was 
badly injured or killed, and experiencing assault 1. See eMethods 9 for a supplemental analysis of 
psychiatric history and its relationship with environmental factors discussed above. 
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eMethods 3. CNV quality control and descriptive statistics 
 
CNV processing steps are illustrated in eFigure 1. We applied a series of quality control 
procedures to CNV output that have been used previously in similar published work 15,16. Code is 
available at https://github.com/BGDlab/cnv-study and 
https://github.com/MartineauJeanLouis/MIND-GENESPARALLELCNV. We inspected chip-
level attributes and determined if they met stringent quality cutoffs with respect to call rate 
(≥95%) log r ratio standard deviation (<0.35), B allele standard deviation (<0.08) and absolute 
value of wave factor (<0.05). All probe coordinates were updated from hg18 to hg19.  
 
CNVs were called using the QuantiSNP17 and PennCNV18 algorithms. Both algorithms are freely 
available and detect CNVs using hidden Markov models (HMMs) of SNP genotype data, and 
have been validated for Illumina and Affymetrix arrays19. Implemented in MATLAB, 
QuantiSNP uses an objective Bayes approach to detect CNVs based on the LogR ratio and the B 
allele frequency for each SNP marker17. Implemented in PERL and C, PennCNV infers CNVs 
based on multiple sources of information including the log r ratio and B allele frequency at each 
SNP marker, the distance between neighboring SNPs, and an adjustment for “genomic waves” 
using a regression model GC content 20. To minimize false discoveries, the overlap between 
CNVs detected from each algorithm was detected using CNVision 21, and only CNVs with 70% 
overlap between the algorithms were included in subsequent analysis.  
 
To minimize false discoveries, we also implemented a series of additional series of filtering 
steps. Following REF16, we initially excluded arrays with a suspiciously high number of CNVs 
detected (defined as ≥50 for low resolution arrays with <1 million probes, and ≥200 for high 
resolution arrays with ≥1 million probes) (see eFigure 2). CNVs were then filtered to ensure they 
were greater than 50,000 base pairs in size; they had a confidence score rating ≥ 30 from either 
QuantiSNP or PennCNV; they did not have >50% overlap with segmental duplications, the 
major histocompatibility complex (MHC), centromeric regions or telomeric regions. Finally, 
chips were excluded if, after CNV filtering, they had >30 CNVs or >8Mb total CNV burden. 
After exclusion criteria based on chip quality control and genetic relatedness within the sample 
(with a threshold of third degree relatives), information about CNVs was available for N=7,543 
participants.  
 
It is important to note that the PNC was genotyped in 15 batches, using ten different types of 
Affymetrix and Illumina arrays by the CHOP Center for Applied Genomics. Arrays have 
different probe coverage of given genomic regions, which has the potential to impact CNV 
detection sensitivity/specificity; this is the principal reason we limited our analysis large CNVs 
>50,000 bps which are more reliably detected across platforms. We elected to use all available 
probes in CNV detection to maximize discovery potential. To assess the impact of differences in 
array technology, main analyses were conducted using subjects genotyped with Illumina arrays 
(N=7,126, all genotyped with Illumina Infinium Beadchip subversions) with additional subjects 
included in sensitivity analyses (eMethods 8). We also conducted analyses where Illumina Chip 
Version was modelled as a random effect in statistical models of the association with outcome 
variables, as well as selected analyses within Chip Version, which showed convergent 
associations with outcomes (eMethods 8). 
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For families with more than one participant in the PNC, determined via kinship analysis in 
KING, we chose a single random family member to be included in subsequent analyses. For 
individuals with more than one chip, we selected the highest quality chip by log r standard 
deviation to be included in subsequent analyses. While systematic re-genotyping to validate 
CNVs calls was not possible for this study because sample aliquots for the PNC are largely 
exhausted, a subset of 1,515 participants had been genotyped more than once on different chips 
by the CHOP Center for Applied Genomics. For these participants, we compared the highest 
quality chip by log r standard deviation (which was used in all subsequent analyses) with the 
second highest quality chip by log r standard deviation, in terms of the reliability of the CNV risk 
scores as indexed by pHI (Pearson’s r=0.83, t=58.018, df=1,513, p=4.44e-53). This suggests 
high reliability for CNV risk scores that are the basis of the results reported in this paper. 
 
After the full quality control procedure, descriptive statistics were calculated at the sample 
(array) level and the CNV level. At the array level, descriptive statistics were for log r ratio 
standard deviation (median 0.15; mean 0.16; range 0.05-0.34; standard deviation, 0.04), B allele 
frequency standard deviation (median 0.039; mean 0.039; range 0.016-0.074; standard deviation, 
0.009), absolute value of wave factor (median 0.01; mean 0.01; range 0.004-0.04; standard 
deviation, 0.005), and the total number of CNVs (median 2; mean 2.55; range 0-11; standard 
deviation, 1.96).  
 
Descriptive statistics at the CNV level – across 18,185 CNVs (10,517 deletions, 7,668 
duplications) identified in the sample after quality control – were calculated for number of SNPs 
(median 27; mean 44.99; range 3- 5192; standard deviation, 84.25), length in Mb (median 0.13; 
mean 0.21; range 0.05-6.84; standard deviation, 0.28), confidence score (median 68.25; mean 
117.91; range 30.0-17611.20; standard deviation, 229.38), and percent overlap between CNVs 
called by the two algorithms, PennCNV and QuantiSNP (median 100%; mean 95.4%; range 70-
100%; standard deviation, 8.0%). The distribution of CNVs in terms of size and chromosomal 
location are shown in eFigure 3A-B. Approximately 36% of CNVs contained at least one gene. 
Using the Database of Genomic Variants (DGV, http://dgv.tcag.ca) “gold standard” as a 
reference for population frequency, 42% of PNC CNVs have a population frequency >0.01, 24% 
of PNC CNVs have a population frequency >0.001 and ≤0.01, 16% of PNC CNVs have a 
population frequency >0.0001 and ≤0.001, and 18% of PNC CNVs have a population frequency 
≤0.0001. 
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eMethods 4. CNV annotation and CNV risk scores 
 
As defined in eTable 2, with respect to terminology we use the phrase “CNV risk score” when 
referring to quantitative measures of predicted risk based on annotating individual’s CNVs. More 
specifically, we use the term CNV burden when referring to annotations of total size or number 
of genes encompassed by CNV, the term intolerance when referring to annotations based on 
intolerance to loss of function (i.e. pLI and LOEUF scores), and the term dosage sensitivity when 
referring to annotations based on deletion or duplication sensitivity (i.e., pHI and pTS). We use 
the phrase “known pathogenic” CNVs when referring to CNVs with known associations with 
cognition or psychopathology from prior literature. 
 
We annotated CNVs using Gencode V19 (hg19) with ENSEMBL 
(https://grch37.ensembl.org/index.html) to derive CNV risk scores. Specifically, CNVs were 
scored on multiple measures of CNV burden, including total size (number of base pairs) and the 
total number of genes (the number of genes fully encompassed by the CNV) (eFigure 3C). Two 
measures of CNV intolerance were also calculated (eFigure 3D). 1) The probability of loss 
intolerance (pLI) is the probability that a gene is intolerant to a loss of function mutation, ranging 
from 0-1 with a relatively bimodal distribution. For a CNV, the cumulative pLI was calculated as 
the sum of pLI of the genes encompassed by the CNV. 2) The loss of function observed/expected 
upper bound fraction (LOEUF) is a continuous measure ranging from 0 to 2, where values below 
0.35 are typically suggestive of intolerance. For a CNV, the cumulative inverse LOEUF (i.e., 
1/LOEUF) was calculated as the sum of the inverse LOEUF of the genes encompassed by the 
CNV 16. Finally, measures of dosage sensitivity were calculated as the probability of 
haploinsuffiency (pHI) and probability of triplosensitivity (pTS), which quantify the probability 
(ranging from 0-1) that a gene is sensitive to copy number loss or copy number gain, respectively 
(eFigure 3E). The pHI and pTS used in the current analyses were derived from a previously 
reported statistical model based on 753,994 genomes, which mapped dosage sensitivity for all 
genes across the genome 22. In contrast to pHI and LOEUF which were used to annotate both 
deletions and duplications (although the impact of deletions and duplication was modelled 
separately), pHI was used to annotate deleted genes while pTS was used to annotate duplicated 
genes. For a CNV deletion, the cumulative pHI was calculated as the sum of the pHI of genes 
encompassed by the CNV; for a CNV duplication, the cumulative pTS was calculated as the sum 
of the pTS of genes encompassed by the CNV. Participant-level CNV risk scores were summed 
across all of a participant’s CNVs, with deletions and duplications considered separately.  
 
For CNV deletions, overall results at the participant level were for total size in Mb (median 0.1; 
mean 0.2, range 0-6.8; standard deviation, 0.3), number of fully encompassed genes (median 0; 
mean 0.831 range 0-51; standard deviation, 2.7), cumulative 1/LOEUF (median 0; mean 0.68; 
range 0-78.6; standard deviation, 3.6), pLI (median, 0; mean, 0.1; range, 0-12.3; standard 
deviation, 0.54), and pHI (median 0; mean, 0.1; range 0-16.8; standard deviation, 0.70). For 
CNV duplications, overall results at the participant level were for total size in Mb (median 0.1; 
mean 0.3, range 0-7.6; standard deviation, 0.5), number of fully encompassed genes (median 0; 
mean 1.6 range 0-60; standard deviation, 3.6), cumulative 1/LOEUF (median 0; mean 1.3 range 
0-97.7; standard deviation, 3.7), pLI (median 0; mean 0.1 range 0-16.9; standard deviation, 0.54), 
and pTS (median 0; mean 0.2 range 0-23.8; standard deviation, 0.92). eFigure 3C-E show the 
distribution across the sample of these CNV risk scores. Note that the interpretation of 
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individuals with cumulative pHI, 1/LOEUF, pTS or pHI close to zero is that these individuals are 
expected not to have damaging CNVs, based on the models of CNV intolerance and dosage 
sensitivity described above. A score of zero could arise if a participant has no CNVs, if none of 
the CNVs encompass genes, or if none of the encompassed genes is intolerant or dosage 
sensitive according the respective annotation scheme. As expected, there was a clear negative 
relationship between CNV in-sample frequency and CNV risk scores (eFigure 4). There were no 
significant associations between CNV risk scores (e.g. indexed by pHI) and biological sex, race, 
or age (eTable 10). 
 
Following prior analyses 15,16, we identified known pathogenic CNVs in the sample based on 
40% overlap with CNVs from a comprehensive systematic literature review 23–27. In total, 130 
total participants with 38 distinct known pathogenic CNVs were identified (see eTable 6). 
Participants with these CNVs were also excluded in a sensitivity analysis (eMethods 8). 
 
As previously reported, pHI and pTS are generally highly correlated per gene (Pearson’s r=0.69), 
though exceptions certainly occur. As would be expected due to the cumulative effect of multiple 
genes also being related to CNV size, the correlation is even higher when considering cumulative 
pHI and pTS within large CNVs – e.g. within 118 known pathogenic autosomal CNVs 23–27 
(Pearson’s r=0.93). Note that simply comparing pHI scores with pTS scores across CNVs in 
terms of their numeric values does not provide a meaningful indicator of predicted risk. While 
both pHI and pTS range from 0-1, numeric equivalence does not imply equal predicted risk. For 
example in REF 22, different thresholds were used to establish genes that were categorically 
haploinsufficient (pHI>0.84) and triplosensitive (pTS > 0.993) with comparable effect sizes. 
This is one reason why, in terms of their effect on outcome measures, deletions and duplications 
were always modelled with separate terms in our statistical models. As described in the main 
text, and consistent with the fact that deletions are typically more damaging than duplications, 
the effect size of deletions was in general markedly higher than that of duplications across 
outcome measures. 
 
Consistent with the fact that CNVs with large effect sizes on developmental outcomes are rare 
events, CNV risk scores are positively skewed (eFigures 3-4). It is important to note that 
modelling assumptions were not violated by skewness in an independent variable30, and because 
of this skewness we also explored categorical and logarithmic transformations of CNV scores. 
Our main results were convergent when using these nonlinear transformations. Moreover, model 
fits as assessed by AIC were superior for untransformed CNV scores (e.g., see Table 1), which 
are also consistent with prior related work 15,16. We note that regression approaches designed to 
model rare events, such as Poisson regression and related approaches, would be applicable if 
modelling CNV scores as the outcome of interest (rather than a predictor variable)31. It will be 
instructive to further explore the impact of model assumptions on CNV associations in future 
work. 
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eMethods 5. PGS calculation, empirical determination of ancestry, and kinship 
 
The approach to derive polygenic scores (PGSs) in the PNC has recently been described in detail 
32. Briefly, prior to imputation, PLINK 1.9 33 was used to remove single nucleotide 
polymorphisms (SNPs) with > 5% missingness, samples with more than 10% missingness, and 
samples in which genotyped sex was different from reported sex. Genotypes were phased (Eagle 
v.2.4) and imputed to the 1000 Genomes Project Other/Mixed GRCh37/hg19 reference panel 
(Phase 3 v.5) using Minimac 4 via the Michigan Imputation Server 45. Following imputation, 
only polymorphic sites with imputation quality R2 ≥ 0.7 and MAF ≥ 0.01 were retained. Multi-
dimensional scaling (MDS) of the imputed genotypes was conducted using KING v.2.2.4 34 to 
identify the top ten ancestry principal components (PCs) for each sample. These PCs were 
projected onto the 1000 Genomes Project PC space, and genetic ancestry was inferred using the 
e1071 35 support vector machines package in R. Based on these inferences, a European ancestry 
cohort was established and other ancestry groups were excluded from PGS analyses based on 
strong evidence of European bias in existing GWAS and PGS calculations 32. A second round of 
unprojected MDS was then performed within the European ancestry group to produce ten PCs 
that were included as additional covariates in statistical models within the European ancestry 
cohort. KING was also used to identify all pairwise relationships out to third degree relatives 
based on estimated kinship coefficients and inferred IBD segments, and a single random family 
member was selected for subsequent analyses.  
 
PRS-CS (PRS using SNP effect sizes under continuous shrinkage) 36 was used to infer posterior 
effect sizes of the SNPs based on specific GWAS summary statistics. Like other Bayesian-based 
techniques such as LDpred37 and SBayesR38, PRS-CS has the substantial advantage of not 
relying on processes of linkage disequilibrium (LD) clumping and p-value thresholding36 and 
these approaches have been shown to yield more predictive PGSs than those produced using 
older methodologies39. To ensure convergence of the underlying Gibbs sampler algorithm, we 
ran 25,000 Markov chain Monte Carlo (MCMC) iterations and designated the first 10,000 
MCMC iterations as burn-in. The PRS-CS global shrinkage parameter was set to 0.01 when the 
discovery GWAS had a SNP sample size that was less than 200,000; otherwise, it was learned 
from the data using a fully Bayesian approach. Default settings were used for all other PRS-CS 
parameters. Raw PGS were produced from the posterior effects using PLINK 1.9, and PGSs 
were standardized using a z-transformation for use in all subsequent analyses. 
 
GWAS summary statistics for specific disorders were based on six GWAS, for attention deficit 
hyperactivity disorder (ADHD)40; autism spectrum disorder (ASD) 41; major depressive disorder 
(MDD) 42; bipolar disorder (BPD)43; schizophrenia (SCZ) PGC wave 3 44,45; and intelligence46. 
Sample sizes of the underlying GWAS referenced above were as follows for ADHD (n=20,183 
cases, 35,191 controls), ASD (n=18,381 cases and 27,969 controls), MDD (n=246,363 cases and 
561,190 controls), BPD (n=20,352 cases and 31,358 controls), SCZ (n= 69,369 cases and 
236,642 controls), and intelligence (n = 269,867). The estimated proportion of variance due to 
common variants based on the above GWAS (h2

SNP) were as follows for ADHD (h2
SNP=0.22), 

ASD (h2
SNP=0.12), MDD (h2

SNP=0.089), BPD (h2
SNP=0.17–0.23 depending on assumed 

prevalence [0.5-2.0%)]), SCZ (h2
SNP=0.24), and intelligence (h2

SNP=0.19). Note that for ADHD, 
we based our PGS on GWAS excluding participants from CHOP (who may have overlapped 
with the PNC)40. 
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The inclusion of ancestry PCs in statistical models was supported by their modest and significant 
associations with cognitive and psychopathology outcome variables. When included in a 
regression model as the effects of interest, in models of 4 cognitive outcomes and 5 
psychopathology outcomes, effect sizes (standardized beta coefficients) ranged from 0.00-0.08 
(median, 0.01). The association was significant (FDR-adjusted P<0.05, 90 multiple comparisons) 
for 10 associations: PC1 and overall accuracy (regression β=-0.08, p=2.35e-08), executive-
complex accuracy (regression β=-0.7, p=1.41e-07), social cognition accuracy (regression β=-
0.05, p=1.68e-03), and memory accuracy (regression β=-0.07, p=4.36e-07); PC4 and overall 
accuracy (regression β=0.03, p=8.04e-03), executive-complex accuracy (regression β=0.03, 
p=1.03e-02), and memory accuracy (regression β=0.03, p=1.37e-02); PC5 and overall accuracy 
(regression β=0.04, p=6.8e-03) and executive-complex accuracy (regression β=0.04, p=3.00e-
03); and PC9 and memory accuracy (regression β=0.04, p=0.05e-03). There were no statistically 
significant associations between the genetic ancestry PCs and psychopathology outcomes, 
specifically. 
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eMethods 6. Neuroimaging 
 
Structural MRIs were acquired on a single 3T Siemens TIM Trio scanner 32-channel head coil as 
described previously 2, using a T1-weighted magnetization-prepared, rapid-acquisition gradient-
echo (MPRAGE) sequences (TR = 1810ms; TE = 3.51 ms; FoV = 180 × 240 mm; resolution 
0.9375 × 0.9375 × 1 mm). All scans were manually rated for image quality as described 
previously 47, and poor quality scans were excluded from downstream analyses. Scans were 
processed in FreeSurfer v5.3.  

Given prior evidence of an association between pathogenic CNVs and alterations in brain size48, 
and well-replicated associations between brain size and intelligence 49 and schizophrenia 
detectable with MRI 50, we predicted that CNVs would impact volumetric structural brain MRI 
phenotypes in the PNC. The wide range of neuroanatomical alterations reported by structural 
neuroimaging studies of specific CNVs, however, prohibited a targeted neuroanatomical 
hypothesis 48 as well as a unique hypothesis about the directionality of alterations. Indeed, 
pathogenic CNVs are known to cause increases or decreases (depending on the specific variant) 
in total brain volume and regional brain structures 49–52. We therefore explored a hypothesis 
based on deviation from normative developmental expectations in brain size, in any direction and 
across multiple imaging phenotypes. Using a recently described approach 55, we deployed a 
normative model of brain development to quantify the imaging phenotypes of individual PNC 
participants relative to age- and sex-normalized growth charts. Cortical gray matter volume 
(GMV), subcortical gray matter volume (sGMV) and white matter volume (WMV) were 
classified as either within the normative range (10%-90%), infranormal (<10%) or supranormal 
(>90%). Categorically, individuals were classified as ‘low deviation’ if they were within the 
normative range for all phenotypes, and ‘high deviation’ if they were either infranormal or 
supranormal in any phenotype. The neuroimaging analysis focused on this omnibus test of a 
deviation from normative trajectories in order to maximize statistical power given the relatively 
smaller number of participants in the neuroimaging sample. The rationale for this procedure was 
also based also on its similarity to recent work showing categorical deviations from normative 
ranges in schizophrenia56.  

Statistical tests were performed using logistic regression with imaging deviation as the outcome 
variable and with CNV-status as the predictor variable of interest. Covariates included ancestry, 
SES, trauma exposure, and a manual rating of image quality47. As normative imaging models 
were stratified for sex and age, these were not included as covariates in baseline models; 
however, the neuroimaging results reported in the main text and below were unchanged when 
including sex and age as additional covariates as well as for models without covariates included. 

To supplement the results describing neuroimaging deviation associated with CNV risk scores 
derived from pHI and pTS as presented in the main text (Figure 3), we replicated the analysis 
using LOEUF-based CNV risk scores. After genetic and imaging quality control, there were 920 
multi-ancestry participants with structural imaging. Of this cohort, 38 participants were 
characterized as having high CNV risk scores, defined as total deletion 1/LOEUF score > 2.94 
(corresponding to LOEUF < 0.34, which has been suggested as the threshold for loss-of-function 
intolerance at the single gene level16,28). Of these participants with high CNV risk scores, 58% 
were also categorized as high deviation from neuroimaging normative models, compared to only 
40% of participants with low CNV risk scores (logistic regression β=0.68, p=0.047) (see eFigure 
7A). We performed an additional supplemental analysis where we re-characterized CNV risk 
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scores to incorporate a category of medium CNV risk scores defined as 0 < total 1/LOEUF score 
≤ 2.94, which comprised 208 participants. The low CNV risk score group then comprised 
remaining participants with total 1/LOEUF score = 0. This stratification resulted in an 
association with neuroimaging-based brain deviation as follows: low CNV risk score group, 38% 
high neuroimaging deviation; medium CNV risk score group, 46% high neuroimaging deviation; 
high CNV risk score group, 58% high neuroimaging deviation (high risk score group, β=0.77, 
p=0.024; medium risk score group, β=0.34, p=0.036; eFigure 7B). Note that these β coefficients 
represent the effect on the log-odds ratio compared to the low CNV risk score reference group. 
See eFigure 10 for plots of the full distributions of the neuroimaging centile scores.  
 
In sum, although the overall power to detect neuroimaging alterations are low because of the 
greatly decreased sample size in the neuroimaging cohort compared the whole PNC, results 
support the hypothesis of increased brain deviation from normative ranges associated with 
elevated CNV risk scores. 
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eMethods 7. Tests of CNV–PGS and CNV–environment interaction effects 
 
It is of considerable theoretical and clinical interest whether CNV risk scores have additive or 
interactive effects with both common variant PGSs as well as environmental factors. However, 
compared to modelling additive effects, statistical power to reliably distinguish interaction 
effects is likely to be substantially lower 57, a problem which may be compounded when 
considering relatively rare events such as the presence of CNVs with high risk scores. Without a 
clear rationale for targeted testing of specific interactions, we performed an exploratory analysis 
where we systematically tested for interactions between CNV risk scores (indexed by pHI and 
pTS) and environmental factors (SES and trauma exposures), and between CNV risk scores and 
the six PGSs queried in main analyses (ASD, ADHD, SCZ, BPD, MDD, and intelligence) for 
four cognitive outcomes (overall accuracy, executive complex cognition accuracy, social 
cognition accuracy, memory accuracy) and five psychopathological outcomes (mood, fear, 
externalizing, psychosis spectrum, and overall psychopathology from bifactor model described 
above). Not surprisingly given the combinatorial multiple testing burden (144 separate 
interaction effects), none of these effects was significant after FDR-correction for multiple 
comparisons. eTable 5 shows exploratory results (uncorrected p<0.05). We conclude that reliably 
distinguishing interactive effects will require larger sample sizes or samples enriched for genetic 
mutations – or alternatively, targeted testing of a smaller number of a priori specified 
hypotheses. This remains an important area for future work. 
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eMethods 8. Sensitivity analyses 
 
As described in eMethods 4, we identified 130 total participants with 38 known pathogenic 
CNVs in the sample, and we excluded these participants in sensitivity analyses in order to 
ascertain whether main results were due entirely to the contribution of known pathogenic CNVs. 
eTable 6 provides a list of known pathogenic CNVs identified as well as the cumulative dosage 
sensitivity scores (pHI and pTS) associated with these CNVs. As shown in eTable 7 and eFigure 
8, main results – including significant associations between CNV risk scores and cognitive and 
psychopathological outcomes – were in general robust to this sensitivity analysis. Specifically, 
the associations between overall accuracy and high-risk-score deletions indexed by pHI (β=-
0.049, p=8.853e-06) and high-risk-score duplications indexed by pTS (β=-.047, p=1.26e-05); the 
association between overall psychopathology and pHI (β=0.031 p=4.20e-03); and the association 
between psychosis spectrum symptoms and pHI (β=0.038, p=1.19e-03) remained statistically 
significant after FDR correction for multiple comparisons. As also shown in eFigure 8, reported 
associations between PGS and neurodevelopmental outcomes, and between environmental 
factors and neurodevelopmental outcomes, were also robust to this sensitivity analysis. We note 
that the effect size was reduced for the association between CNV risk scores and cognitive 
outcomes when excluding known pathogenic CNVs from the sample – for deletions but not for 
duplications. This may be due to diminished statistical power to detect the true effect size when 
excluding 130 participants who disproportionately have high CNV risk scores – given previous 
evidence that the effect size of the association between CNV risk scores and general intelligence 
is similar whether or not known pathogenic CNVs were included in models 15,16. For the 
neuroimaging analysis, 17 of the 59 participants in the main analysis with high CNV risk scores 
(pHI score or pTS score >1) had known pathogenic CNVs. Unsurprisingly, for a sensitivity 
analyses excluding participants with pathogenic CNVs, the association between CNV risk scores 
and brain deviation from the normative model dropped to “trend level” in terms of statistical 
significance (β=0.62, p=0.052) due to the reduced sampled size, though the effect size was 
undiminished (in fact marginally increased) compared to the observed association when known 
pathogenic CNVs were included in the model (original β=0.56, original p=0.039), supporting the 
conclusion that the association between CNV risk scores and brain deviation was similar whether 
or not CNVs were “pathogenic” in the sense of having known associations with cognition or 
psychopathology from prior literature. Future work investigating neuroimaging-CNV 
associations will benefit from larger samples or samples enriched for high CNV risk scores. 
 
As described in the main results, we also performed a series of additional sensitivity analyses to 
assess the associations between CNV risk scores, cognition and psychopathology. First, an 
analysis including X chromosomal CNVs yielded similar outcomes compared to our main result 
(eTable 8). This sensitivity analysis could not include pHI because that score was derived for 
autosomal genes only, but the results for intolerance scores LOEUF and pLI were convergent 
with our main analyses. Second, an analysis including Affymetrix chips yielded an additional 
442 participants with similar outcomes to the main results (eTable 9). Third, we modelled 
Illumina Chip Version as a random effect in statistical models of the association with outcome 
variables, showing highly convergent results with main analyses (e.g. pHI association with 
Overall Accuracy, β=-0.11, p=5.86e-25; pTS association with Overall Accuracy, β=-0.05, 
p=1.17-06; pHI association with psychosis spectrum symptoms, β=-0.49, p=3.49e-05) and 
suggesting that Chip Version did not confound the association between high-risk-score CNVs 
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and developmental outcomes (see eFigure 9). We also performed selected associations with 
outcome variables within Chip Version to further show that it was unlikely any biases between 
Chip Versions accounted for the reported results. Results were convergent with main analyses 
that combined data across Chip Version (e.g. eTable 12 shows results for the 5 most frequent 
Chip Versions, which together account for >90% of the data, for the association between CNV 
risk scores and total accuracy). Finally, main results were robust to sensitivity analyses that did 
not include covariates sex, self-identified race or ancestry PCs in models (eTable 11). All 
outcomes measures were age-normalized, but all results were also robust to including age as an 
additional regressor in statistical models. 
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eMethods 9. Analysis of family history 
 
Mental illness in the parents of the present sample is likely to be related to outcome measures, as 
well as not only genetic but also environmental factors considered as predictor variables in the 
present study. For instance, parental history of psychiatric disorder is an indicator of genetic risk 
but is likely also to be associated with traumatic exposures. While information about parental 
history of mental illness per se is unfortunately not available in the PNC, a measure of family 
history of psychosis (in any first degree relative) was collected and described in prior work 58. As 
would be predicted by prior work, this measure of family history was associated with traumatic 
exposures (β=0.11, p=5.96e-10) as well as neighborhood-level SES (β=0.03, p=0.00136). We 
reran models of environmental and genetic influence on outcomes including this measure of 
family history, and all results were robust to the inclusion of this measure in statistical models 
(eFigure 11). Moreover, there was an independent association between family history and overall 
psychopathology (β=0.06, p=6.39e-05). Speculatively, this supplemental analysis is consistent 
with the hypothesis that family history is related to but does not fully account for the 
environmental associations with neurodevelopmental outcomes reported in the present study. 
Limitations include the fact that this measure was focused on psychosis in particular and also 
that it was based on self- or caregiver-reported family history rather than independent clinical 
evaluation of family members. Further work, in studies designed to address these questions, is 
clearly required to investigate the combined influence of genetic and environmental effects on 
neurodevelopmental outcomes.  
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eFigure 1. Schematic of CNV data processing pipeline 
 

 
LRRSD, log r ratio standard deviation; BAF, B allele frequency; |WF|, absolute value of wave 
factor; QS, QuantiSNP 
  

1. Chip Quality 
Criteria 

Exclusions

2. CNV‐Level 
Exclusions

3. Chip‐Level 
Exclusions

Variant has < 70% minimum 
overlap between QS and 
PennCNV algorithms
Variant size < 50 kb
Confidence score < 30
Variant  > 50% overlap w/ 
segmental duplications
Variants with any 
centromere or telomere 
overlap
> 50% overlap with major 
histocompatibility complex

4. Participant‐
Level curation 

LRRSD > 0.35
BAF > 0.08
|WF| > 0.05

Chips with > 30 CNVs
Chips with > 8Mb cumulative 
size of CNVs

Keep lowest LRRSD chip for 
participants with greater 
than one chip 
Keep one random family 
member per family



 

© 2022 Alexander-Bloch A et al. JAMA Psychiatry. 

eFigure 2. Exclusion plot of chip frequency by number of CNV and markers 
 

 
As part of chip quality control illustrated in eFigure 1, chips were assessed for their number of 
CNVs relative to their number markers (probes). Following 16, we excluded arrays with a 
suspiciously high number of CNVs detected (defined as ≥50 for low resolution arrays with <1 
million probes, and ≥200 for high resolution arrays with ≥1 million probes). Red dotted boxes 
indicate catchment areas for exclusion, meaning that chips inside red boxes were excluded. 
 
 
 
 
  



 

© 2022 Alexander-Bloch A et al. JAMA Psychiatry. 

eFigure 3. Distribution of CNVs and CNV risk scores in the study sample 
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Distribution of CNVs and CNV risk scores in the study sample for deletions (red) and 
duplications (blue). All results are after the full quality control procedure described in eMethods 
4, presented as histograms where the height of the lines corresponds to the number of CNVs (A-
B) or to the number of participants (C-E). A) Total number of CNVs within 5 size bins. B) Total 
number of CNVs distributed across autosomes, from left to right: all CNVs; genic CNVs 
(encompassing at least one gene); CNVs with cumulative pHI or pTS score > 0; CNVs with 
cumulative pHI or pTS score > 1. Note this Panel contains the same information as Main Figure 
1A presented in a different fashion. C) Participant burden scores: Left Panel, total size in Mb of 
all of a participant’s CNVs; Right Panel, the number of genes fully encompassed by CNVs. D) 
Participant intolerance scores: Left Panel, the sum of genes’ probability of loss intolerance (pLI) 
scores; Right Panel, the sum of the inverse of genes’ loss of function observed/expected upper 
bound fraction (LOEUF) scores. E) Participant dosage sensitivity scores: the sum of genes’ 
probability of haploinsuffiency (pHI) and probability of triplosensitivity (pTS) scores for 
deletions and duplications, respectively. 
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eFigure 4. CNV frequency generally decreases in association with increases in CNV 
risk score 
 
 

 
CNV frequency generally decreases in association with increases in CNV risk score (measured 
by cumulative probability of haploinsufficiency (pHI) in deletions and cumulative probability of 
triplosensitivity (pTS) in duplications. After applying quality control criteria outlined in eFigures 
1-2 and eMethods 3, CNVs with 50% reciprocal overlap were considered members of the same 
CNV “cluster.” A) CNV deletions shown with cumulative pHI of genes in each CNV cluster. B) 
CNV duplications shown with cumulative pTS of genes in each CNV cluster. In clusters, pHI or 
pTS was estimated as the mean of all CNVs in the cluster. Clusters with a mean pHI or pTS 
greater than 10 are labeled in the hexplot with their chromosome number and the mean start and 
stop (Mb) of the CNVs within the cluster. The x-axis shows the total number of participants with 
each CNV. As expected, most CNVs were unique (1-member clusters without 50% reciprocal 
overlap to another CNV) and had CNV risk scores close to 0. Note that clustering based on 
reciprocal overlap was performed for visualization purposes for this figure, but in all other 
reported analyses each participant’s CNV risk score was calculated independently. Participant-
level CNV risk scores were summed across all of a participant’s deletions and duplications 
respectively. Note that this Figure shows CNV risk scores including known pathogenic CNVs, 
which were included in main results but excluded in sensitivity analysis (eMethods 8). 
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eFigure 5. CNV associations with cognition and psychopathology, including 
environmental factors in multiancestry sample 
 

 
Analogous to Main Figure 1 but including environmental factors in addition to CNV risk scores. 
CNV risk scores were quantified as the cumulative probability of haploinsufficiency (pHI, a 
measure of sensitivity to deletion) or probability of triplosensitivity (pTS, a measure of 
sensitivity to duplication). Dot plots show the effect size (standardized beta coefficient) for the 
association of pHI and pTS with eight cognitive outcomes (Top Panel) including speed and 
accuracy scores for specific (e.g. “Memory”, “Social Cognition”) and global (“Overall”) 
cognitive measures. “Slow speed” is summarized from items requiring deliberation, while “fast 
speed” is summarized from items requiring rapid decisions. For psychopathology outcomes, dot 
plots of the effect size (standardized beta coefficient) for pHI and pTS generated via bifactor 
models (Middle Panel) and correlated traits factor models (Bottom Panel). All outcome measures 
were age normalized, and additional covariates included self-identified race, sex and 10 ancestry 
principal components in all models. This figure was generated based on the multi-ancestry 
sample of participant genotyped on Illumina arrays that met quality control criteria (n=7,101), 
and p-values were corrected for 68 comparisons using the Benjamini-Hochberg false discovery 
rate (FDR).  
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eFigure 6. Combined models of developmental outcomes and their joint associations 
with CNV scores, environmental factors, and common variant polygenic scores (PGSs) 
 

 
Analogous to Main Figure 2 but showing additional terms from the model and omitting depiction 
of 95% confidence intervals for clarity. Each point in the dot plots indicate the value of a given 
predictor variable’s effect size in models of cognition or psychopathology for models of 
cognition (Top Panel) and models of psychopathology (Bottom Panel). CNV risk scores were 
quantified by deletion cumulative probability of haploinsufficiency (pHI) and duplication 
cumulative probability of triplosensitivity (pTS). Environmental factors comprised neighborhood 
socioeconomic status (SES) and trauma exposure. PGSs were included for ADHD, ASD, BPD, 
‘g’ (general intelligence), MDD and SCZ. All outcome measures were age normalized, and 
additional covariates included self-identified race, sex and 10 ancestry principal components in 
all models. This analysis was conducted in the European ancestry sample genotyped with 
Illumina arrays that met quality control criteria (n=4,482) and p-values were corrected for 90 
comparisons using the Benjamini-Hochberg false discovery rate (FDR).  
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eFigure 7. Brain imaging (MRI) deviation from normative models and CNV risk scores 
 

 
Analyses of the association between brain imaging (MRI) deviation from normative models and 
CNV risk scores using LEOUF-based risk score and incorporating a medium-risk-score category 
(compare with Main Figure 3). A) Proportion of individuals with high-risk-score CNVs 
(cumulative 1/LOEUF score > 2.85) who are categorized as low brain deviation (2nd to 9th 
decile in all imaging phenotypes) versus high brain deviation (1st or 10th decile in at least one 
imaging phenotype). B) Addition of medium-risk-score category (0 < cumulative 1/LOEUF ≤ 
2.85). LOEUF, loss-of-function observed/expected upper bound fraction. 
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eFigure 8. Sensitivity analysis excluding participants with known pathogenic CNVs 
 

 
Results of sensitivity analysis excluding 130 total participants with 38 known pathogenic CNVs 
from the sample. The re-analysis of CNV risk score (Top Panel) was conducted in the multi-
ancestry sample (n=7,101), while the analysis of polygenic scores (PGS, middle panel) was 
conducted in the European Ancestry sample (n=4,482). For consistency with Main Figure 2, the 
analysis of environmental factors (Bottom Panel) was also conducted in the European Ancestry 
sample (n=4,482). FDR-correction was across 90 total comparisons. All outcome measures were 
age normalized, and additional covariates included self-identified race, sex and 10 ancestry 
principal components in all models. 
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eFigure 9. Sensitivity analysis with random effect for Illumina Infinium Beadchip 
subversion 
 

 
 
Results of sensitivity analysis incorporating a random effect for Illumina Infinium Beadchip 
subversion into statistical models (multi-ancestry sample size, n=7,101; FDR correction across 
32 associations). Results were highly convergent with main analyses (compare with Main Figure 
1). All outcome measures were age normalized, and additional covariates included self-identified 
race, sex and 10 ancestry principal components in all models. 
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eFigure 10. Full distributions of individual brain imaging–based centile scores 
 

 
Illustration of full distributions of individual brain imaging based centile scores (age- and sex-
stratified). Violin plots of individual brain imaging based centile scores: A) cortical gray matter 
volume (GMV), B) subcortical gray matter volume, C) cerebral white matter volume (WMV). 
CNV risk scores are determined as for Main Figure 3 (total pHI > 1 or total pTS > 1). 
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eFigure 11. Combined models of developmental outcomes and their joint associations 
with CNV scores, environmental factors, and common variant polygenic scores 
 

 
Analogous to eFigure 6 but in models that also include a measure of family of history of 
psychosis. Each point in the dot plots indicate the value of a given predictor variable’s effect size 
in models of cognition or psychopathology for models of cognition (Top Panel) and models of 
psychopathology (Bottom Panel). CNV risk score is quantified by deletion cumulative 
probability of haploinsufficiency (pHI) and duplication cumulative probability of 
triplosensitivity (pTS). Environmental factors comprised neighborhood socioeconomic status 
(SES) and trauma exposure. PGSs were included for ADHD, ASD, BPD, ‘g’ (general 
intelligence), MDD and SCZ. All outcome measures were age normalized, and additional 
covariates included self-identified race, sex and 10 ancestry principal components in all models. 
This analysis was conducted in the European ancestry sample genotyped with Illumina arrays 
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that met quality control criteria (n=4,482) and p-values were corrected for 99 comparisons using 
the Benjamini-Hochberg false discovery rate (FDR). 
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eTable 1. Demographic information for CNV samples after quality control 
 

Demographic All data Illumina arrays 

Total n 7,543 7,101 

Age 14.2 (3.66) 14.2 (3.67) 

SES 0.06 (0.98) 0.125 (0.955) 

Sex (Female) 3818 (50.6) 3574 (50.3%) 

Ancestry 
  European 
  African 
  Other 

4486 (59%) 
2222 (30%) 
835 (11%) 

   
4482 (63%) 
1818 (26%) 
801 (11%) 

SES, Neighborhood socioeconomic status 
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eTable 2. Definitions of terms related to CNV risk scores 
 

CNV risk scores Quantitative measures of predicted risk based on annotating CNVs in terms of burden, 
intolerance or dosage sensitivity. 

Burden Measure of total size or number of genes encompassed by CNV. 
Intolerance  Measure based on genes’ intolerance to loss of function, for genes encompassed by a CNV (i.e. 

pLI and LOEUF scores). 
pLI Probability that a gene is intolerant to a loss of function mutation, where values closer to 1 are 

suggestive of intolerance 58.  
LOEUF Loss of function observed/expected upper bound fraction, a measure ranging from 0 to 2, where 

values below 0.35 are typically suggestive of intolerance 55.  
Dosage sensitivity Measure based on genes’ deletion or duplication sensitivity, for genes encompassed by a CNV. 

The probability of haploinsufficiency (pHI) is measure of a gene’s sensitivity to deletion, and 
the probability of triplosensitivity (pTS) is a measure of gene’s sensitivity to duplication.22 

Pathogenic CNVs CNVs with specific, known clinical associations with cognition or psychopathology based on 
prior literature. CNVs with high risk scores are not necessarily pathogenic. 
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eTable 3. Logistic regression models of categorical diagnoses 
 
Logistic regression models of categorical diagnoses (psychosis spectrum, ADHD, anxiety, and 
depression) and their association with CNV risk scores. Note that this table reports association 
between CNV risk scores and categorical diagnoses rather than dimensional psychopathology 
outcomes, which are the focus of main analyses. Covariates included sex, self-identified race, 
and 10 ancestry PCs. This table was generated from the multi-ancestry sample of participant 
genotyped on Illumina arrays that met quality control criteria (n=7101), and p-values were 
corrected for 8 comparisons using the Benjamini-Hochberg false discovery rate (FDR). 
 

Diagnosis CNV Risk Score Stand. β 95% CI p-value FDR-adj p 

Psychosis-spectrum Deletion pHI 0.128 (0.056, 0.201) 
0.000461  0.00369 

Duplication pTS 0.018 (-0.044, 0.074) 
0.552 1 

ADHD Deletion pHI 0.110 (0.037, 0.182) 
0.00260 0.0182 

Duplication pTS 0.020 (-0.050, 0.080) 
0.546 1 

Anxiety Deletion pHI 0.042 (-0.027, 0.114) 
0.242 1 

Duplication pTS 0.004 (-0.047, 0.057) 
0.874 1 

Depression Deletion pHI -0.062 (-0.178, 0.026) 
0.230 1 

Duplication pTS -0.049 (-0.200, 0.061) 
0.453 1 

pHI, cumulative probability of haploinsufficiency; pTS, cumulative triplosensitivity. 
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eTable 4. Models of cognitive and psychopathological outcomes 
 
Models of cognitive and psychopathological outcomes and their association with CNV risk 
scores (cumulative pHI for deletions and pTS for duplications), environmental factors 
(neighborhood SES and traumatic exposures), and polygenic scores (PGSs for ASD, ADHD, 
SCZ, BPD, MDD, and intelligence). AIC and adjusted r2 are shown for models with increasing 
complexity, from left to right: demographic covariates only (sex, self-identified race and 10 
ancestry principal components); CNV risk scores and demographic covariates; environmental 
factors and demographic covariates; CNV risk scores, environmental factors, and demographic 
covariates; CNV risk scores, environmental factors, and demographic covariates. This table was 
generated from the European sample of participant genotyped on Illumina arrays that met quality 
control criteria (n=4,482). All outcome measures were age-normalized.  
 

Outcome Demographic 
covariates 

CNV risk 
scores 

Environmental 
Factors 

Environmental 
Factors and 
CNV risk scores 

Environmental 
Factors, CNV 
risk scores, and 
PGSs 

AIC Adj r2 AIC Adj r2 AIC Adj r2 AIC Adj r2 AIC Adj r2 

Overall Accuracy 11820 0.003 11750 0.019 11536 0.020 11461 0.037 11071 0.119 

Executive Complex 
Cognition Accuracy 

11693 0.007 11640 0.019 11438 0.026 11381 0.039 10933 0.133 

Memory Accuracy 12067 0.006 12016 0.018 11829 0.010 11777 0.022 11602 0.062 

Social Cognition 
Accuracy 

12340 0.014 12299 0.024 12148 0.020 12107 0.029 12042 0.045 

Overall 
Psychopathology 

12304 0.003 12302 0.004 11647 0.141 11643 0.142 11620 0.147 

Psychosis spectrum 12266 0.005 12256 0.007 11656 0.133 11643 0.136 11627 0.140 

Externalizing  12226 0.010 12225 0.011 11778 0.106 11775 0.107 11714 0.120 

Fear  12039 0.018 12040 0.018 11788 0.073 11789 0.073 11780 0.076 

Mood  12465 0.006 12466 0.006 11942 0.117 11943 0.117 11919 0.123 

CNV, copy number variant; AIC, Akaike information criterion; pHI, probability of haploinsufficiency; pTS, 
probability of triplosensitivity. 
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eTable 5. Exploratory analysis of interaction effects 
 
Interaction effects were explored between CNV risk scores and environmental factors 
(neighborhood-level SES and trauma exposure) and between CNV risk scores and common 
variant risk indexed by polygenic scores. Statistics are shown for a subset of nominal effects 
(uncorrected p<0.05). No effects remain significant after FDR-correction for 144 multiple 
comparison. All models also included additive effects for pHI, pTS, PGS and environmental 
factors, self-reported race, sex and 10 ancestry principal components. This analysis was run on 
the European ancestry sample genotyped on Illumina chips that met quality control criteria 
(n=4,482) 
 

Outcome Interaction  
Stand. 
beta 

Lower 
95% CI  

Upper 
95% CI  p-value 

FDR-adj. 
p  

Overall Accuracy pHI:Trauma -0.0370 -0.0706 -0.0035 0.0305 0.3656 

Overall Accuracy pTS:PGS.SCZ -0.0367 -0.0668 -0.0066 0.0170 0.3095 

Executive Complex Cognition 
Accuracy 

pTS:SES 0.0225 0.0001 0.0449 0.0489 0.4400 

Executive Complex Cognition 
Accuracy 

pTS:PGS.SCZ -0.0338 -0.0634 -0.0041 0.0257 0.3656 

Social Cognition Accuracy pHI:PGS.MDD -0.0304 -0.0554 -0.0054 0.0172 0.3095 

Social Cognition Accuracy pTS:PGS.SCZ -0.0461 -0.0798 -0.0125 0.0071 0.2645 

Memory Accuracy pHI:Trauma -0.0423 -0.0779 -0.0067 0.0200 0.3204 

Memory Accuracy pTS:PGS.IQ -0.0259 -0.0503 -0.0016 0.0365 0.3883 

Mood Spectrum pHI:SES -0.0469 -0.0849 -0.0089 0.0156 0.3095 

Mood Spectrum pTS:PGS.IQ -0.0392 -0.0666 -0.0118 0.0050 0.2645 

Psychosis Spectrum pHI:Trauma 0.0398 0.0023 0.0774 0.0378 0.3883 

Psychosis Spectrum pHI:PGS.BPD 0.0410 0.0110 0.0710 0.0073 0.2645 

Psychosis Spectrum pHI:PGS.SCZ 0.0498 0.0139 0.0856 0.0065 0.2645 

Externalizing Spectrum pTS:Trauma 0.0348 0.0015 0.0681 0.0406 0.3898 

Externalizing Spectrum pHI:PGS.MDD 0.0275 0.0029 0.0520 0.0283 0.3656 

Externalizing Spectrum pTS:PGS.ADHD 0.0401 0.0086 0.0717 0.0128 0.3095 

SES, socioeconomic status; PGS, polygenic score; pHI, probability of haploinsuffiency; pTS, 
probability of triplosensitivity; CI, confidence interval 
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eTable 6. Known pathogenic CNVs identified in the PNC sample 
 
Known pathogenic CNVs defined by systematic literature review identified in the sample. See 
eMethods 4; these CNVs were excluded in sensitivity analysis. Sorted by frequency (number of 
participants, n, shown in leftmost column). Cumulative probability of haploinsufficiency (pHI) 
and triplosensitivity (pTS) are defined as the sum of pHI and pTS of genes encompassed by 
CNVs for deletions or duplications, respectively. Start and stop are in hg19 coordinates. 
 

n CNV Region or Gene ID Type CHR Start Stop Cumulative pHI Cumulate pTS 

20 15q11.2 DUP chr15 22805313 23094530 - 1.86719 

17 15q11.2 DEL chr15 22805313 23094530 2.4473 - 

10 22q11.2 DEL chr22 19037332 21466726 12.87807 - 

9 1q21.1 TAR DUP chr1 145394955 145807817 - 4.46906 
8 NRXN1 DEL chr2 50145643 51259674 0.97382 - 

7 16p13.11 DUP chr16 15511655 16293689 - 1.2352 

6 ZMYM5 DUP chr13 20411593 20437773 - 0.04618 

5 16p12.1 DEL chr16 21950135 22431889 2.07167 - 

5 16p11.2 distal DEL chr16 28823196 29046783 4.57374 - 

5 17p12 (HNPP/CMT1A) DEL chr17 14141387 15426961 1.65613 - 

4 1q21.1 TAR DEL chr1 145394955 145807817 4.27452 - 

4 1q21.1 DEL chr1 146527987 147394444 2.04502 - 

4 16p11.2 distal DUP chr16 28823196 29046783 - 5.68589 

4 16p11.2 proximal DUP chr16 29650840 30200773 - 13.56827 

4 17q12 HNF1B DUP chr17 34815904 36217432 - 6.04723 

3 22q11.2 DUP chr22 19037332 21466726 - 17.75638 

2 15q11.2q13.1_BP2-BP3  DEL chr15 22805313 28390339 7.66382 - 

2 15q12 GABRB3 GABRA5 DEL chr15 26971834 27548820 0.60443 - 

2 16p11.2 proximal DEL chr16 29650840 30200773 7.37869 - 

2 2q37 DEL chr2 239716679 243199373 12.67625 - 

2 DMRT1 DUP chr9 841690 969090 - 0.04376 

1 1q21.1 DUP chr1 146527987 147394444 - 1.33485 

1 10q11.21q11.23 DEL chr10 49390199 51058796 3.76301 - 

1 10q11.21q11.23 DUP chr10 49390199 51058796 - 4.82419 

1 15q11.2q13.1 BP2-BP3 DUP chr15 22805313 28390339 - 6.11996 

1 15q12 GABRB3 GABRA5 DUP chr15 26971834 27548820 - 0.57187 

1 15q13.1q13.3 BP3-BP5 DEL chr15 29161368 32462776 3.93027 - 

1 15q13.3 BP4-BP5 CHRNA7 DEL chr15 31080645 32462776 2.63204 - 

1 16p13.11 DEL chr16 15511655 16293689 3.05968 - 

1 16q23.3 DEL chr16 82660399 83830215 0.50356 - 

1 17q11.2 NF1 DEL chr17 29107491 30265075 4.9606 - 
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1 2q13 DEL chr2 111394040 112012649 1.01279 - 

1 22q11.2 distal DEL chr22 21920127 23653646 4.20015 - 

1 22q11.2 distal DUP chr22 21920127 23653646 - 7.03165 

1 3q29  DEL chr3 195720167 197354826 9.69381 - 

1 4p16.3 (WH) DUP chr4 1552030 2091303 - 5.84965 

1 VPS13B DEL chr8 100025494 100889808 0.74101 - 
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eTable 7. Association with CNV risk scores excluding known pathogenic CNVs 
 
Association between CNV risk scores and overall cognitive accuracy, sorted by lowest AIC, 
showing the effect on models of excluding pathogenic CNVs. Overall accuracy scores were age-
normalized, and additional covariates included sex, self-identified race and 10 ancestry principal 
components. This table was generated from the multi-ancestry sample of participant genotyped 
on Illumina arrays that met quality control criteria, and p-values were corrected for 16 
comparisons using the Benjamini-Hochberg false discovery rate (FDR). This table is analogous 
to Main Table 1 but showing the effect of excluding pathogenic CNVs. To facilitate comparison, 
the original results including pathogenic CNVs are also appended below the double bar, with 
rows marked by asterisks (*), while the results for the sensitivity analysis excluding known 
pathogenic CNVs appear above the double bar. 
 

CNV risk 
score 

Deletion/ 
Duplication 

Stand. β 95% CI p-value P (FDR) Adj r2 AIC 

pHI Deletion pHI -0.050 (-0.072, -0.027) 1.33E-05 1.58E-03 0.114 18578 
 Duplication pTS -0.048 (-0.07, -0.026) 1.80E-05 2.12E-03 

  

pLI Deletion pLI -0.036 (-0.059, -0.013) 2.30E-03 2.41E-01 0.113 18582 
 Duplication pLI -0.055 (-0.077, -0.033) 1.12E-06 1.35E-04 

  

1/LOEUF Deletion 1/LOEUF -0.039 (-0.061, -0.016) 7.42E-04 7.94E-02 0.112 18593 
 Duplication 1/LOEUF -0.036 (-0.058, -0.014) 1.29E-03 1.37E-01 

  

Log pLI Deletion log pLI -0.048 (-0.07, -0.026) 2.22E-05 2.59E-03 0.112 18597 
 Duplication log pLI 0.008 (-0.014, 0.031) 4.59E-01 1.00E+00 

  

N genes Deletion n genes -0.029 (-0.051, -0.006) 1.24E-02 1.00E+00 0.112 18597 
 Duplication n genes -0.039 (-0.061, -0.017) 6.27E-04 6.84E-02 

  

Total Size Deletion Total Size -0.080 (-0.16, -0.001) 4.76E-02 1.00E+00 0.110 18610 
 Duplication Total Size -0.024 (-0.076, 0.028) 3.69E-01 1.00E+00 

  

Log  Deletion log 1/LOEUF -0.019 (-0.042, 0.003) 8.82E-02 1.00E+00 0.110 18611 

1/LOEUF Duplication log 1/LOEUF -0.014 (-0.036, 0.009) 2.30E-01 1.00E+00 
  

pHI>0 /  Deletion pHI>0 -0.017 (-0.039, 0.006) 1.39E-01 1.00E+00 0.110 18613 
pTS>0 Duplication pTS>0 -0.006 (-0.029, 0.016) 5.68E-01 1.00E+00 

  

pHI* Deletion pHI -0.121 (-0.144, -0.099) 7.41E-26 9.49E-24 0.125 18922 
 Duplication pTS -0.054 (-0.076, -0.032) 1.31E-06 1.47E-04 

  

pLI* Deletion pLI -0.117 (-0.14, -0.094) 1.03E-23 1.30E-21 0.124 18928 
 Duplication pLI -0.059 (-0.081, -0.037) 1.06E-07 1.20E-05 

  

1/LOEUF* Deletion 1/LOEUF -0.118 (-0.14, -0.095) 2.94E-24 3.73E-22 0.123 18937 
 Duplication 1/LOEUF -0.044 (-0.066, -0.022) 7.38E-05 8.04E-03 

  

Log pLI* Deletion log pLI -0.103 (-0.126, -0.081) 2.90E-19 3.63E-17 0.121 18959 
 Duplication log pLI -0.046 (-0.068, -0.025) 3.28E-05 3.61E-03 

  

N gene* Deletion n genes -0.092 (-0.114, -0.069) 1.85E-15 2.29E-13 0.117 18989 
 Duplication n genes -0.022 (-0.044, 0.000) 4.86E-02 1.00E+00 

  

Total Size* Deletion Total Size -0.084 (-0.106, -0.062) 1.28E-13 1.57E-11 0.115 19001 
 Duplication Total Size 0.001 (-0.021, 0.023) 9.14E-01 1.00E+00 

  

Log  Deletion log 1/LOEUF -0.066 (-0.089, -0.044) 7.07E-09 8.06E-07 0.113 19021 
1/LOEUF* Duplication log 1/LOEUF -0.013 (-0.035, 0.009) 2.51E-01 1.00E+00 

  

pHI>0 / * Deletion pHI>0 -0.162 (-0.238, -0.085) 3.24E-05 3.60E-03 0.111 19038 
pTS>0 Duplication pTS>0 -0.032 (-0.084, 0.019) 2.20E-01 1.00E+00 

  

CNV, copy number variant; AIC, Akaike information criterion; CI, confidence interval; pLI, probability of loss 
intolerance; 1/LOEUF, inverse of loss-of-function observed/expected upper bound fraction; pHI, probability of 
haploinsufficiency; pTS, probability of triplosensitivity; *rows below the double bar refer to main results including 
known pathogenic CNVs, whereas rows above the double bar refer to results from the sensitivity analysis that 
excluded known pathogenic CNVs. 
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eTable 8. Associations with CNV risk scores including X chromosome CNVs 
 
Associations between CNV risk scores and overall cognitive accuracy including X chromosome 
CNVs. Rows are sorted by lowest AIC. Overall accuracy scores were age-normalized, and 
additional covariates included sex, self-identified race and 10 ancestry principal components. 
Analogous to Main Table 1 but including CNVs on the X chromosome. This table was generated 
from the multi-ancestry sample of participant genotyped on Illumina arrays that met quality 
control criteria, and p-values were corrected for 16 comparisons using the Benjamini-Hochberg 
false discovery rate (FDR). 
 

 CNV score Stand. β 95% CI p-value P (FDR) Adj r2 AIC 

pHI Deletion pHI 
-0.122 (-0.145, -0.099) 2.54E-25 3.25E-23 0.123 18351 

 Duplication pTS 
-0.06 (-0.082, -0.037) 1.46E-07 1.69E-05    

pLI Deletion pLI 
-0.098 (-0.121, -0.075) 2.04E-16 2.59E-14 0.116 18406 

 Duplication pLI 
-0.042 (-0.064, -0.02) 2.37E-04 2.61E-02    

1/LOEUF Deletion 1/LOEUF 
-0.078 (-0.102, -0.055) 5.47E-11 6.89E-09 0.113 18431 

 Duplication 1/LOEUF 
-0.042 (-0.064, -0.019) 2.61E-04 2.85E-02    

Log pLI Deletion log pLI 
-0.075 (-0.098, -0.052) 2.42E-10 2.95E-08 0.112 18438 

 Duplication log pLI 
-0.032 (-0.055, -0.01) 5.20E-03 5.20E-01    

N genes Deletion n genes 
-0.055 (-0.078, -0.031) 4.07E-06 4.64E-04 0.11 18450 

 Duplication n genes 
-0.045 (-0.068, -0.022) 9.84E-05 1.09E-02   

Total Size Deletion Total Size 
-0.18 (-0.259, -0.1) 9.54E-06 1.08E-03 0.108 18463 

 Duplication Total Size 
-0.057 (-0.112, -0.002) 4.21E-02 1.00E+00    

Log 
1/LOEUF 

Deletion log 1/LOEUF 
-0.048 (-0.071, -0.025) 5.46E-05 6.12E-03 0.108 18464 

 Duplication log 
1/LOEUF -0.026 (-0.049, -0.003) 2.48E-02 1.00E+00    

pHI>0 / 
pTS>0 

Deletion pHI>0 
-0.054 (-0.077, -0.031) 3.67E-06 4.22E-04 0.108 18465 

 Duplication pTS>0 
-0.008 (-0.031, 0.015) 4.81E-01 1.00E+00    

  
      

CNV, copy number variant; AIC, Akaike information criterion; CI, confidence interval; pLI, probability of loss 
intolerance; 1/LOEUF, inverse of loss-of-function observed/expected upper bound fraction; pHI, probability of 
haploinsufficiency; pTS, probability of triplosensitivity 
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eTable 9. Associations with CNV risk scores including Affymetrix arrays 
 
Association between CNV risk scores and overall cognitive accuracy including Affymetrix 
arrays. With Affymetrix array, total n=7,543. Rows sorted by lowest AIC. Overall accuracy 
scores were age-normalized, and additional covariates included sex, self-identified race and 10 
ancestry principal components. Analogous to Main Table 1 but including Affymetrix arrays for 
the multi-ancestry sample of participant that met quality control criteria. p-values were corrected 
for 16 comparisons using the Benjamini-Hochberg false discovery rate (FDR). 
 

 CNV score Stand. β 95% CI p-value P (FDR) Adj r2 AIC 

pHI Deletion pHI 
-0.121 (-0.142, -0.099) 6.33E-27 8.10E-25 0.13 20016 

 Duplication pTS 
-0.054 (-0.075, -0.033) 6.28E-07 7.04E-05   

pLI Deletion pLI 
-0.116 (-0.138, -0.093) 2.34E-24 2.95E-22 0.129 20023 

 Duplication pLI 
-0.061 (-0.082, -0.039) 2.27E-08 2.56E-06   

1/LOEUF Deletion 1/LOEUF 
-0.116 (-0.138, -0.094) 6.89E-25 8.76E-23 0.128 20032 

 Duplication 1/LOEUF 
-0.046 (-0.067, -0.025) 1.93E-05 2.11E-03   

Log pLI Deletion log pLI 
-0.103 (-0.125, -0.081) 2.72E-20 3.41E-18 0.126 20051 

 Duplication log pLI 
-0.05 (-0.071, -0.028) 4.81E-06 5.29E-04   

N genes Deletion n genes 
-0.09 (-0.112, -0.068) 9.65E-16 1.20E-13 0.122 20087 

 Duplication n genes 
-0.024 (-0.046, -0.003) 2.57E-02 1.00E+00   

Total Size Deletion Total Size 
-0.082 (-0.103, -0.06) 1.21E-13 1.49E-11 0.12 20102 

 Duplication Total Size 
-0.002 (-0.023, 0.019) 8.59E-01 1.00E+00 

Log 
1/LOEUF 

Deletion log 1/LOEUF 
-0.068 (-0.09, -0.046) 1.15E-09 1.31E-07 0.118 20117 

 Duplication log 
1/LOEUF -0.017 (-0.038, 0.005) 1.29E-01 1.00E+00   

pHI>0 / 
pTS>0 

Deletion pHI>0 
-0.179 (-0.254, -0.104) 3.11E-06 3.45E-04 0.116 20133 

 Duplication pTS>0 
-0.036 (-0.087, 0.014) 1.60E-01 1.00E+00   

CNV, copy number variant; AIC, Akaike information criterion; CI, confidence interval; pLI, probability of loss 
intolerance; 1/LOEUF, inverse of loss-of-function observed/expected upper bound fraction; pHI, probability of 
haploinsufficiency; pTS, probability of triplosensitivity 

 

 
 
 
  



 

© 2022 Alexander-Bloch A et al. JAMA Psychiatry. 

eTable 10. No association between pHI CNV risk scores and demographic variables 

 

Biological Sex pHI mean t-statistic p-value 

Male | Female 0.09 | 0.08 0.85 0.40 

Self-identified race pHI mean t-statistic p-value 

European American | African American 0.08 | 0.08 0.16 0.88 

European American | Other 0.08 | 0.10 0.66 0.51 

African American | Other 0.08 | 0.10  0.72 0.47 

Age Pearson’s r t-statistic p-value 

 -0.01 0.72 0.47 

pHI, probability of haploinsufficiency  
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eTable 11. Associations without demographic covariates included in statistical models 
 
Association between CNV risk scores and overall cognitive accuracy without demographic 
covariates included in statistical models. Overall accuracy scores were age-normalized. 
Analogous to Main Table 1 but without demographic covariates included in statistical models. 
This table was generated from the multi-ancestry sample of participant genotyped on Illumina 
arrays that met quality control criteria, and p-values were corrected for 16 comparisons using the 
Benjamini-Hochberg false discovery rate (FDR). 
 

 CNV score Stand. β 95% CI p-value P (FDR) Adj r2 AIC 

pHI Deletion pHI 
-0.120 (-0.143, -0.096) 1.19E-22 2.85E-21 0.017 19726 

 Duplication pTS 
-0.060 (-0.083, -0.037) 3.76E-07 5.32E-06   

pLI Deletion pLI 
-0.116 (-0.141, -0.092) 4.16E-21 9.14E-20 0.017 19730 

 Duplication pLI 
-0.065 (-0.088, -0.042) 3.16E-08 5.05E-07   

1/LOEUF Deletion 1/LOEUF 
-0.117 (-0.141, -0.093) 1.61E-21 3.70E-20 0.016 19737 

 Duplication 1/LOEUF 
-0.054 (-0.077, -0.03) 5.57E-06 6.69E-05   

Log pLI Deletion log pLI 
-0.106 (-0.13, -0.083) 2.16E-18 4.55E-17 0.014 19748 

 Duplication log pLI 
-0.058 (-0.081, -0.035) 1.00E-06 1.31E-05   

N genes Deletion n genes 
-0.096 (-0.119, -0.072) 2.42E-15 4.83E-14 0.011 19770 

 Duplication n genes 
-0.047 (-0.07, -0.024) 8.05E-05 8.86E-04   

Total Size Deletion Total Size 
-0.089 (-0.112, -0.065) 1.26E-13 2.40E-12 0.009 19785 

 Duplication Total Size 
-0.028 (-0.051, -0.004) 1.94E-02 3.88E-02 

Log 
1/LOEUF 

Deletion log 1/LOEUF 
-0.071 (-0.095, -0.048) 2.53E-09 4.56E-08 0.006 19802 

 Duplication log 
1/LOEUF -0.036 (-0.059, -0.012) 2.60E-03 1.86E-02   

pHI>0 / 
pTS>0 

Deletion pHI>0 
-0.237 (-0.318, -0.157) 7.20E-09 1.22E-07 0.005 19811 

 Duplication pTS>0 
-0.054 (-0.109, 0.001) 5.29E-02 5.29E-02   

CNV, copy number variant; AIC, Akaike information criterion; CI, confidence interval; pLI, probability of loss 
intolerance; 1/LOEUF, inverse of loss-of-function observed/expected upper bound fraction; pHI, probability of 
haploinsufficiency; pTS, probability of triplosensitivity 
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eTable 12. Impact of Illumina beadchip subversion 
 
Assessing the impact of Illumina Chip Version on the association between CNV risk score and 
developmental outcomes. Table shows results for overall accuracy within chip for the 5 most 
frequent chips which together account for >90% of the sample. Overall accuracy scores were 
age-normalized, and additional covariates included sex, self-identified race and 10 ancestry 
principal components. Analogous to Main Table 1 but showing models of data from each chip 
separately. The row “all chip” also shows data from the full sample for comparison. This table 
was generated from the multi-ancestry sample of participant genotyped on Illumina arrays that 
met quality control criteria. P-values shown in this table were not corrected for multiple 
comparisons. 
  

Chip sample 
size  

Stand. β 95% CI  p-value 

pHI 
    

 
2,784 -0.0954 (-0.139,-0.0518) 1.86E-05 

 
1,329 -0.195 (-0.247,-0.143) 3.61E-13 

 
1,274 -0.163 (-0.214,-0.112) 6.57E-10 

 
752 -0.068 (-0.139,0.00333) 0.0617 

 
266 -0.162 (-0.281,-0.0433) 0.00771 

 
All Chips -0.122 (-0.145,-0.0992) 7.41E-26 

pTS 
    

 
2,784 -0.0514 (-0.0863,-0.0518) 0.00389 

 
1,329 -0.0665 (-0.118,-0.143) 0.0119 

 
1,274 -0.0682 (-0.12,-0.112) 0.00949 

 
752 -0.0131 (-0.0843,0.00333) 0.718 

 
266 -0.0313 (-0.15,-0.0433) 0.603 

 
All Chips 0.054 (-0.0759,-0.0322) 1.31E-06 
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