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Figure S1. Organization and expression of Bacteroides alginate PULSs. (A.) Polysaccharide utilization loci (PULSs)
involved in alginate utilization from strains of the 3 different species we found to utilize alginate in this study.

These PULs contain two non-classified polysaccharide lyases (PL) labeled as PLnc1 and PLnc2. (B.) Expression of
alginate responsive sentinel susC-like genes for representative strains by qPCR compared to glucose as a reference
showing their strong responses to growth on alginate. Error bars are standard deviation (SD) of the mean. Three
replicate cultures were performed. Corresponds to Figure 1.
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Figure S2. Gene organization, expression and activity of Bacteroides functions associated with carrageenan
degradation. (A.) Schematics of the B! and Bo'>“* CGN-PULSs highlighting the genes that are syntenic

and/or homologous between the two loci. The dashed lines are included to align PUL genes and do not correspond
to actual sequence. For shared genes, the percent amino acid identity is indicated by the numbers in between the
PUL schematics. The TnSeq fold-change differences between glucose and carrageenan are represented by heat map
at the bottom and only correspond to data gathered using the Bo'*“* isolate (Table S5). (B.) DNA sequencing
results and corresponding genomic insertion site schematic for B#”*' with pink nucleotides highlighting the direct
repeat that mediates insertion. (C.) A schematic of the nested PCR approach used to examine possible ICE excision.
(D.) Agarose gel showing the PCR products from the second round of the nested PCR for B#7*! where both empty
genome and excised products are produced indicative of ICE excision. Note that the prominent band in the last well
(MM-CGN (3/6 primer set)) is a PCR artifact and not the excised ICE form (marked with *). (E.) C-PAGE analysis
of products generated by the B#”*' GH82a over time, showing a product profile consistent with endo activity.

(F.) C-PAGE analysis of products generated by the B! GH82b over time, showing a product profile consistent
with endo activity. (G.) C-PAGE analysis of products generated by the B#7*! GH1a over time, showing a product
profile consistent with endo activity (H.) C-PAGE analysis of production of lower molecular weight “poligeenan”
oligo- and polysaccharides produced over time during Bt*”*! growth (n=2) on 0.2% A-CGN. The poligeenan

pattern observed is similar to the product profile of GH82a digested A-CGN as compared to untreated and acid
hydrolysed A-CGN. The last lane shows supernatant of B#*7*! grown for 52h in galactose medium to control

for capsular polysaccharide or other products made by this strain. Gel was stained overnight using 0.005% Stains-
All in 50% ethanol solution followed by destaining in 10% ethanol. Corresponds to Figure 2.
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Figure S3. Growth of Bacteroides and Faecalicatenum isolates on seaweed polysaccharides. Growth
curve analyses (mean of n=6 separate replicates) of seaweed degrading bacterial isolates on 7 different
substrates, plus glucose as a control. Corresponds to Figures 1-5.
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Figure S4. Identification of additional strains with PULs similar to those found in B. thetaiotaomicron and
B. ovatus and the relationship of their associated ICEs with that involved in mobilization of porphyran
utilization functions. (A.) Histograms showing reference guided alignment of CGN-degrading strain genomes

to the entire Bo'*“® CGN-ICE sequence. The ICE and PUL linear coverage and nucleotide identity of

covered regions of the ICE and PUL are shown as percent identity on the right. (B.) A tree of 2,255 unique
Bacteroidetes Tral protein sequences from publicly available data and the new genomes reported here. The
locations of the TraJ sequences associated with the B. plebeius-type porphyran ICE and the newly identified

CGN ICE are highlighted with green and red circles, respectively, showing their distance. Corresponds to Figure 2.
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Figure S5. Identification of additional strains with PULs similar to those found in B. uniformis and B. plebeius
for agarose and porphyran utilization, respectively. (A.) Mapping of genomic reads from agarose-porphyran
degrading strains to the Bu™*' reference PUL showing linear coverage across the genomically inserted PUL and
percent of coverage and nt identity. (B.) Mapping of genomic reads from porphyran degrading strains to the Bp'’'3
reference PUL showing linear coverage across the ICE and percent of coverage and nt identity. Mapping of the
Bx'392P agsembly against the Bu™?' reference is included at bottom to show the lack of homology to either of

the known agarose or porphyran-degrading loci. Corresponds to Figures 3-4.
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Figure S6. Characterization of a second mobilizable PUL associated with poprhyran degradation by human
gut Bacteroides. (A.) DNA sequencing results and corresponding genomic insertion site schematic for
Bx'3%%F with pink nucleotides highlighting the direct repeat that presumably mediates insertion.

(B.) Agarose gel showing the PCR products from the second round of the nested PCR for Bx'8%?" where

an empty genome product is formed indicating some amount of ICE excision. (C.) Growth analysis of Bx'802F
on two additional seaweed polysaccharides, ulvan and fucoidan, demonstrating lack of growth on these two
polysaccharides. (D.) Phylogenetic comparison of GH16 enzymes from the B! and Bo'*“* CGN PULs,

and the Bx'®%?" and Bp'"'* POR PULs against biochemically characterized GH16 members in the CAZy
database. Bt, Bo, Bx, and Bp sequences are marked by black arrows. Characterized sequences of “red seaweed
degrading” GH16 subfamilies (11-17, 26) are highlighted and members are colored by enzyme activity.

(E.) The above tree is pruned to display accession numbers and illustrate products from glycosidic cleavage.
Corresponds to Figure 4.
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Figure S7. Activity and phylogeny of Faecalicatena enzymes that degrade agarose and porphyran.

(A.) Thin-layer chromatography analysis of enzymatic reactions for 3 of 4 GH117 enzymes found in Fc>*.
Minimal enzymatic activity is observed on agarose (A) and porphyran (P) substrates with galactose (G) as a
reference. These enzymes are often neoagarooligosaccharide hydrolases targeting smaller agarose fragments.

The fourth GH117 found in Fc548 is 100% similar by amino acid sequence to one analyzed here and was therefore
omitted from analysis. (B.) Thin-layered chromatography of enzyme reactions of the same GH117 enzymes in A.,
but incubated with the supernatants of the GH86 (Fc¢**®) and GH50 (F¢*®) reactions. No further degradation of
the agarose or porphyran oligosaccharides is observed after GH117 treatment. (C.) An agar plate where the filter
sterilized recombinant glycoside hydrolases from Faecalicatena contorta species were spot plated and incubated
overnight at 37°C. As observed with colonies growing on the same plates, the GH50 and GH86 display “pitting”
even as pure enzymes, whereas the GH117 enzymes show little, if any, activity. (D.) Maximum-Likelihood
phylogenic trees generated using deduced amino acid sequences of the GH50, GH86 and GH117 glycoside
hydrolases from Faecalicatena spp. as well as similar sequences located by BLAST or present in the CAZY
database and Protein Data Bank (PDB). Note that the Faecalicatena spp. enzymes are often in clades containing
enzymes from the marine fish gut symbiont genera Epulopiscium and also Paenibacillus spp. environmental
bacteria that have been isolated from marine sediments. Since the Clostridiales sp. VE202-21 enzymes clustered
close to the Faecalicatena spp. enzymes, we searched public databases to find that this is also a Faecelicatena
contorta strain. Three human gut Ruminococcus sp. enzymes also clustered closely to one of the GH117 enzymes
from Faecalicatena spp. However, examination of these genomes provided little evidence for similar seaweed
degrading phenotypes based on the surrounding genetic architecture. (E.) Metabolite analysis of Faecalicatena
spp. grown on galactose, agarose and porphyran. The mM concentrations of each SCFA-BCFA were normalized
to a media control and an OD_ of 1.0 for each strain and substrate. There is no Fc**® analysis on agarose as

this strain does not grow on agarose. There was no detection of butyrate, isobutyrate or isovalerate in any sample.
Error bars correspond to the standard error of the mean. Three replicate experiments were performed.
Corresponds to Figure 5.



