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Descriptors used for MDM model

Mordred

Here we list the 743 features from the Mordred package which we used for the MDM

model. For more details on each descriptor category, please refer Moriwaki et al. 1 and

Mordred documentation at,

https://mordred-descriptor. github.io/documentation/master/index.html.
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Table S1: Mordred descriptors.

Descriptor category Descriptor

ABCIndex ABC, ABCGG

AcidBas nBase, nAcid

Aromatic nAromAtom, nAromBond

AtomCount nI, nX, nHeavyAtom, nCl, nBr, nS, nSpiro, nH, nF, nHetero
nC, nP, nB, nBridgehead, nO, nN, nAtom

Autocorrelation

ATSC3i, ATS5are, ATS0are, ATS8are, ATS3dv, ATSC1Z, ATSC5m, ATSC6dv, ATS3are, ATS7i, AATS0dv,
ATSC6m, ATS6d,
AATSC0pe, ATS7pe, AATS0pe, ATSC7m, ATSC0d,ATS3v, ATSC6i, ATSC5i,
AATSC0v, ATS4m, ATSC1m,ATS7Z, ATS8dv,
ATSC4are, ATSC4p, ATSC5d, ATSC4m,ATSC7i, ATSC5are, ATSC6v, ATS2i, ATS5pe,
ATSC5dv, ATSC1are, AATS0p, ATS0dv,
ATS5v, ATSC8are, ATS6are, ATSC8v, ATSC2p, ATSC0p, ATS1m,
ATS0d, ATSC6Z, ATS5Z, ATS4Z, ATS2Z, ATSC3v,ATS2pe, ATS4p,
ATS1v’, ’ATSC8dv’, ’ATS4pe’, ’ATSC4i’, ’ATS0m’, ’ATSC2m’, ATS0i, ATS1are, AATS0m, ATSC6d, ATSC8pe,
ATS8m, ATSC3p,
ATS5m, ATS5d, ATS5p, ATSC8d, ATSC0i, ATS1pe, ATSC6pe, ATS0pe, ATSC6are, ATSC0pe,
ATSC5p,ATS7m, ATS6dv,
ATS1i, AATSC0Z, ATS8i, AATSC0p, ATSC0Z, ATSC7pe,
ATSC7v, ATSC1p, ATS1p, ATS1Z, ATS3Z, ATS6i, ATSC0dv, ATSC6p,
ATS8p, ATSC8p, ATS4i, ATSC0are, AATS0Z, ATS3d, AATS0d, ATS2m, ATS5dv, ATS7p, ATSC2d,
ATS6v, ATS1d,ATSC4pe,
ATS3pe, ATS8Z, ATS1dv, ATS8d, AATSC0d, ATSC7dv, AATSC0m, ATSC0v, ATSC7d, ATSC8Z, ATSC1i,
ATSC1d,ATSC5pe,
ATSC1dv, ATSC2dv, ATS7dv, ATSC4dv, ATS7v, ATSC3pe, ATSC3Z, ATS3m, ATS2d, ATSC1pe,
ATS0p, ATS4d, ATS8v, ATS2p,
AATSC0are, AATSC0i, AATS0are, ATSC8m,
ATS3p, ATS5i,
ATSC4d, ATSC2v, ATS3i, ATSC2pe, ATS7are, AATS0i, ATSC2Z,
ATSC4Z, ATSC3are, AATSC0dv, ATS8pe, ATS0v,
ATS2dv, ATSC7Z, ATS4are, ATSC5v, ATSC7are, ATS0Z, ATS7d, ATSC1v,
ATS4dv, ATSC3dv,ATS4v, ATS6pe, ATSC0m, ATSC2i, ATS6m, ATS2v, ATS2are, ATSC4v, ATS6Z, ATSC7p, ATSC3m,
ATSC2are, ATSC5Z, ATSC8i, ATS6p, ATSC3d, AATS0v

BalabanJ BalabanJ

BertzCT BertzCT

BondCount nBondsS, nBondsO, nBonds, nBondsA, nBondsT, nBondsKD,
nBondsM, nBondsKS, nBondsD

CarbonTypes C1SP2, C1SP1, C3SP2, FCSP3, C3SP3, C2SP1, C1SP3, C2SP3,
C4SP3, C2SP2

Chi

Xp-5dv, Xc-5dv, Xpc-4dv,
Xp-4dv, Xp-3d, Xch-3dv, Xpc-5dv, Xp-7d, Xc-3dv, Xp-6d, Xch-3d, Xp-6dv, Xpc-6d,
Xch-4dv, Xch-5d,
Xc-4d, Xp-2d, Xc-5d, Xch-7dv, Xc-3d, Xch-6dv, Xp-2dv, Xch-4d, Xch-6d, Xp-3dv, Xpc-4d, Xp-1dv,Xch-5dv,
Xc-4dv, Xp-4d,
Xpc-6dv, Xp-5d, Xp-7dv, Xch-7d, Xpc-5d, Xc-6dv, Xp-1d, Xc-6d

Constitutional Spe, Sare, Si, Mpe, Mm, Sv, Mv, SZ, MZ, Mare, Sm, Mi, Sp, Mp

EStat

NssS, NssssSn, NsssPbH, SssssSi, NsGeH3, SaaNH, NsNH3, SddsN, NsSeH, StN, SssSe, SsNH2,
NaasC, NdsCH, SsCl, SdCH2,
SaaS, SsssdAs, NdSe, NssPH, SdSe, StsC, NaaN, NdssC, SsssCH, SssBe, NaaCH, NaaO,
SsCH3, SssS, SdsCH, SssPH,SsssPbH,
NsCH3, SaaCH, NsF, NsssssAs
SssBH, NddC, NdsssP, NssGeH2, SdssC, SdsssP, NssPbH2, SsssB, NsBr, NaaNH, SaaaC, SsssSnH,
NssssBe, NssNH2, SsssssP, SssssSn, NsssB, NsI, NdS,
SaasC, NssBe, SsSnH3, NdssSe, NddsN, NdssS, NtN, SssCH2, NtsC,
SsssNH, NsssSnH, SssssGe, NssSnH2, NsssssP,
NddssSe, NsSiH3, NddssS, SaasN, SsssssAs, SddssS, NaaSe, SssssBe, NssSiH2,
NssAsH, NsPH2, SaaN, SsssN, SssO, SssssC, NaaaC, NsssNH, NsSnH3, SsPH2, SaaSe, SddC,
NssssGe, SssssB, SssssN, SsssP,
SsssGeH, SdsN, SddssSe, NdCH2, SsSeH, NsssGeH, SsGeH3, SdssSe, NssNH, SssAsH, SsLi,
NdNH, SssGeH2, NsOH, SdO,
NdO, NtCH, NssssB, NssSe, SsssAs, SssPbH2, NssssN, NsCl, SdS, SsSH, SsOH, NsssSiH,
StCH, SsI, SssNH, SsSiH3,SsAsH2,
NssssPb, SdNH, NdsN, NssBH,
SsPbH3, SsssSiH,
SaaO, NaaS, SsF, NsAsH2, NsssdAs, NsSH, NssssSi, SssSnH2, SssSiH2,
NsPbH3,NsssP,NssCH2, NaasN, SsBr, NsssCH, SsNH3, NsNH2, NssO, SssssPb, NssssC, SdssS, NsssN,
NsLi, SssNH2, NsssAs

EccentricConnectivityIndex ECIndex

FragmentComplexity fragCpx

Framework fMF
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Table S2: Mordred descriptors continued.

Descriptor category Descriptor

HydrogenBon nHBDon, nHBAcc
InformationContent CIC5, TIC2, ZMIC3, IC5, ZMIC1, MIC5, ZMIC5, IC0, TIC3, MIC3, ZMIC2, TIC5, MIC0, CIC1,CIC0, MIC4, ZMIC0,TIC0, IC2, IC3,TIC1,

MIC2, IC4, CIC4, TIC4, CIC3, ZMIC4, MIC1, IC1, CIC2

Lipinski Lipinski, GhoseFilter

LogS FilterItLogS

McGowanVolu VMcGowan

MoeTyp

VSA_EState2, SlogP_VSA11, SlogP_VSA9, SMR_VSA6, EState_VSA6, PEOE_VSA13, SlogP_VSA6, PEOE_VSA9, VSA_EState7,
SMR_VSA7, SlogP_VSA2, VSA_EState6, SlogP_VSA8, PEOE_VSA6, EState_VSA9, EState_VSA1, VSA_EState8, EState_VSA3,
SlogP_VSA5, EState_VSA4, VSA_EState9, VSA_EState1, PEOE_VSA1, SMR_VSA5, SMR_VSA8, SlogP_VSA10, PEOE_VSA7,
VSA_EState4, SlogP_VSA7, VSA_EState5, EState_VSA8, SMR_VSA2,PEOE_VSA10, PEOE_VSA3, LabuteASA, PEOE_VSA8,
SMR_VSA3, EState_VSA5, EState_VSA10, SlogP_VSA1, PEOE_VSA2, SMR_VSA4, PEOE_VSA11, VSA_EState3, PEOE_VSA4,
SMR_VSA1, PEOE_VSA5, EState_VSA7, SlogP_VSA4, SlogP_VSA3, PEOE_VSA12, SMR_VSA9, EState_VSA2

PathCount piPC1, TMPC10, piPC10, piPC3, MPC10, MPC9, MPC8, MPC5, piPC6, piPC5, piPC8, piPC9, piPC7, MPC2, piPC2, MPC7, TpiPC10,
piPC4, MPC6, MPC4, MPC3

Polarizability bpol, apol

RingCount

n9FAHRing, n5aRing, nG12FHRing, n5HRing, n11AHRing, n5AHRing, n3HRing, n12AHRing, n9ARing, n6FHRing, nARing,
n4HRing, n10aRing, n9Ring, n5FaHRing, nRing, naRing, n6FaRing, n10HRing, n6FaHRing, n6ARing, nFaRing, n9HRing,
n6aRing, n5FARing, n8FARing, n4FaRing, nG12Ring, n4ARing, n11FRing, n4AHRing, n12aRing, n12FRing, n9aRing,
n12FARing, n5FaRing, n3AHRing, naHRing, n9FaHRing, n5FRing, n6aHRing, n12FaRing, n11FHRing, n8FHRing, n7FaRing,
n3aRing, n7FARing, n8FaHRing, n4FARing, n6FAHRing, n5FHRing, n12FaHRing, n3aHRing, n9aHRing, nFARing, nFaHRing,
n6Ring, n11FaRing, nG12FaHRing, n9FARing, nFAHRing, n12FHRing, n12HRing, n12Ring, n10aHRing, n4aRing, nG12FARing,
n3Ring, n10FaHRing, n8FRing, n9FRing, nAHRing, n10AHRing, n9FHRing, n7AHRing, n8aHRing, nFHRing, n12ARing,
n12aHRing, n9AHRing, nG12FAHRing, n8FAHRing, nG12AHRing, nG12FRing,n11FARing, n8ARing, n8FaRing, n4aHRing,
n4FHRing, n11HRing, n10Ring, n10FRing, n4FRing, n7HRing, nHRing, n5FAHRing, n7FRing, n6HRing, n12FAHRing, n7aHRing,
n10FaRing, n4FaHRing, n11aRing, nG12ARing, n10FARing, n5Ring, n3ARing, n10ARing, n11FAHRing, n11FaHRing, n9FaRing,
n7FAHRing,nG12FaRing, n6FRing, n10FAHRing,n8AHRing, nG12aRing, nFRing, n5aHRing, n11Ring, n6FARing, nG12aHRing,
nG12HRing, n4FAHRing, n7FHRing, n7aRing, n11aHRing, n11ARing, n7ARing, n8HRing, n4Ring, n6AHRing, n5ARing,
n8Ring, n10FHRing, n8aRing, n7FaHRing, n7Ring

RotatableBon [nRot]

SLogP [SLogP, SMR]

TopoPSA TopoPSA, TopoPSA(NO)

TopologicalCharg GGI8, JGI7, GGI10, JGI5, JGI6, JGI1, JGI3, JGI8, JGI2, GGI9, GGI5, GGI6, GGI4, JGI4, JGI9, JGT10, JGI10, GGI2, GGI1, GGI3,
GGI7

TopologicalIndex Diameter, Radius

WalkCount MWC02, MWC03, TSRW10, SRW03, SRW08, MWC04, SRW04, MWC06, TMWC10, SRW07, MWC08, SRW10, MWC01, MWC10,
SRW09, SRW02,MWC05, MWC09, SRW06, MWC07, SRW05

Weight AMW, MW

WienerIndex WPol, WPath

ZagrebIndex Zagreb1, mZagreb2, Zagreb2
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Fragments descriptors

Figure S1: Most common fragments determined using RDKit (1-52). Other commonly
found fragments identified with the help from a chemistry expert (53-59).

S4



Comparison of structural properties of different datasets

We present further comparison of the properties of our dataset with external datasets

used for performance comparison.

Table S3: Additional structural properties of molecules in the datasets used in this
work. H.Atom and A.Bond are the counts of heavy atoms atoms and aromatic bonds.
*Cl,*C,*=O, and *O are the counts of fragments containing -Cl, -C, =O and -OH, where
“*" denotes any arbitrary atom.

Dataset Mass H.Atom A.Bond *Cl *C *=O *O

Ours 16 - 1817 1 - 132 0 - 66 0 - 12 0 - 24 0 - 17 0 - 33
Delaney 16 - 780 1 - 55 0 - 30 0 - 12 0 - 7 0 - 6 0 - 11
Tang 46 - 665 2 - 47 0 - 27 0 - 10 0 - 7 0 - 6 0 - 8
Cui 16 - 1582 1 - 109 0 - 64 0 - 12 0 - 24 0 - 17 0 - 20
Boobier 111 - 460 7 - 33 0 - 24 0 - 3 0 - 4 0 - 4 0 - 6
Huuskonen 46 - 665 2 - 47 0 - 27 0 - 10 0 - 7 0 - 6 0 - 6
Sol. Challenge 1 138 - 504 8 - 36 0 - 21 0 - 4 0 - 7 0 - 4 0 - 6
Sol. Challenge 2 SET1 152 - 1201 11 - 85 0 - 27 0 - 2 0 - 24 0 - 11 0 - 5
Sol. Challenge 2 SET2 151 - 846 11 - 61 0 - 32 0 - 4 0 - 11 0 - 4 0 - 3
Water Set Wide (WSW) 26 - 494 2 - 35 0 - 27 0 - 10 0 - 7 0 - 5 0 - 8
Water Set Narrow (WSN) 26 - 494 2 - 33 0 - 19 0 - 4 0 - 6 0 - 5 0 - 8
Hou SET1 165 - 405 12 - 25 0 - 18 0 - 8 0 - 5 0 - 3 0 - 3
Hou SET2 70 - 459 4 - 24 0 - 21 0 - 9 0 - 3 0 - 3 0 - 4
Wang 16 - 780 1 - 55 0 - 30 0 - 12 0 - 7 0 - 6 0 - 11
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Figure S2: Box plots showing the distribution of different structural properties of solu-
bility datasets. Sol.Ch1, Sol.Ch2_S1, and Sol.Ch2_S2 stand for Sol. Challenge 1, Sol.
Challenge 2 SET1, and Sol. Challenge 2 SET2 respectively.
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Duplicate removal process

Because we perform analysis of the model performance on different combinations of our

data with external datasets, we must deal with duplicate entries that exist across the

datasets. We used a process similar to what is described in2 to resolve duplicates in the

external datasets. If the number of duplicates is exactly two and the difference between

these solubilities is less than 0.03, two entries were merged by considering the average

of the two values. If the difference is greater than 0.03, the values were discarded. If the

number of duplicates are greater than two, their standard deviation was calculated. If

the standard deviation is less than 0.05, the solubility closest to the mean solubility of

the duplicates was kept in the dataset and the other were discarded. Next, the SMILES

were converted to the format defined in RDKit in order to make sure that all the SMILES

strings across all the datasets conform to the same convention. If any duplicate SMILES

resulted after this conversion, all such duplicates were discarded as the duplication might

have been caused by limitations in RDKit. This process discarded 22, 2 and 8 molecules

in Delaney, Huuskonen and Solubility Challenge 1 datasets respectively. In the Delaney

dataset, additional 11 pairs of SMILES strings which were detected to be duplicates after

being read by RDKit, were also removed. In the Huuskonen dataset, 4 SMILES strings

failed to be read by RDKit and another 2 pairs of SMILES happened to be duplicates after

converting to the canonical form.

Structure-Solubility Exploration

Before applying predictive modeling to our dataset, we first explore the data and perform

a structure-property relationship study. We start by analyzing the relationships between

measured solubility values and molecular descriptors as calculated by Mordred. Features

that correlate with log solubility with an absolute Pearson correlation coefficient greater

than 0.4 are shown in Figure S3. Positive and negative correlations are indicated using

blue and red colors respectively. This result only includes features that do not contain
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Figure S3: Absolute value of Pearson correlations of highly correlated features with log
solubility with positive correlations in blue and negative correlations in red

any missing values. Additionally, because we expect many of the molecular descriptors to

be highly correlated, we also removed any features with a correlation coefficient greater

than 0.95 with another feature while keeping the feature that has higher correlation with

solubility. This allows us to identify features which likely provide independent predictive

signals of solubility. Pairwise scatter plots of most positively and negatively correlated

descriptors are shown in Figure S5 and Figure S6. We next describe some of the 29

molecular descriptors identified to have an absolute correlation greater than 0.4.

FilterItLogS is a theoretical approximation for solubility originally used in the Filter-

it software, which explains why this feature has such high observed correlation with

solubility. FilterItLogS is calculated as,

FilterItLogS = 0.898 + 0.104
√

MOLWT + wici, (S1)

where MOLWT is the molecular weight, and wi is the weight corresponding to the
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Figure S4: Mean solubility of molecules within different bins of the number of given
fragments and rings in the molecules normalized by molecular size.

count of ith fragment ci. The types of fragments used are listed in Table S4 along with

the corresponding weights used in the RDKit implementation of FilterItLogS.

In general, the fragments containing N and O have positive weights and those con-

taining C and halogen atoms have negative weights. Therefore, the high correlation of

FilterItLogS with solubility implies that the solubility is proportional to the counts of O

and N containing fragments and inversely proportional to the molecular weight and the

number of halogens in the molecule.

SlogP is the octanol-water partition coefficient calculated based on the method pro-

posed by Wildman and Crippen.3 This correlation is also not surprising as the octanol-

water partition coefficient has been known to correlate with solubility.4,5 PEOE_VSA6,

SMR_VSA7 and PEOE_VSA7 are measures of van der Waals surface area of the atoms.

The fact that these terms having negative correlations with solubility indicates that the

larger the size of the molecule, the less soluble it is. In fact, the molecular size is consid-
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Figure S5: Top 5 positively correlated features.

ered as an important feature for solubility prediction.6 piPC1, piPC8, and piPC10 are path

counts (that are weighted by bond order) of length 1, 8 and 10 respectively. TpiPC10 is

sum of weighted path counts over the path lengths 1 to 10. nC is the number of Carbon

atoms. C2SP2 is the number of SP2 carbon atoms bound to two other carbons. ZMIC1 is a

measure of the information content (Shannon’s entropy) calculated by classifying atoms

based on the bond order and the type of the neighboring atom. NaasC is the number of
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Figure S6: Top 5 negatively correlated features.

carbon atoms to which two aromatic bonds and a single bond are attached. n6aRing is

the number of 6-membered aromatic rings in the molecule. Xp-5d is the Chi connectiv-

ity index (weighted by sigma electrons) for fragments containing 5 bonds. CIC0 is the

complementary information content based on different types of atoms in the molecule.

BertzCT is a measure of “complexity" of a molecule. According to RDKit’s documenta-

tion, this feature consists of two parts to quantify the complexity of bonding and the
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Table S4: Fragments and weights used for FilterItLogS

Fragment Weight

[NH0;X3; v3] 0.71535
[NH2;X3; v3] 0.41056
[nH0;X3] 0.82535
[OH0;X2; v2] 0.31464
[OH0;X1; v2] 0.14787
[OH1;X2; v2] 0.62998
[CH2; !R] -0.35634
[CH3; !R] -0.33888
[CH0;R] -0.21912
[CH2;R] -0.23057
[ch0] -0.37570
[ch1] -0.22435
F -0.21728
Cl -0.49721
Br -0.57982
I -0.51547

distribution of heteroatoms.

In the Mordred implementation, the Lipinski value for a given molecule is a binary

indicator of whether all four of Lipinski rules are satisfied (number of Hydrogen bond

donors≤ 5, number of Hydrogen bond acceptors≤ 10, molecular weight≤ 500, and logP

≤ 5). According to Lipinski, an orally active drug should satisfy at least three of these

rules. Therefore, some information regarding solubility should be embedded in these

rules. However, as seen from Figure S3 many molecules with high measured solubility

have Lipinski values of zero.

Another way to explore the trends in solubility is in terms of molecular fragments.

Early work on solubility often used the counts and fractions of fragments as a predictive

signal. As we saw with the FilterItLogS descriptor, such features have high correlation

with the molecular solubility.

We trained a random forest model using the log solubility as the target property

and the counts of 59 fragments (described in the Data section of the main text) within

the molecule as the features. Cl, C, =O, and O are among the highly influential fea-

tures according to random forest’s feature importance metric (the feature importance
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scores of the most important ten features are given in Figure S7). In Figure S4, we show

how the solubility changes with respect the prevalence of these four fragments within a

molecule. Since the raw fragment counts are likely to be correlated with the size of the

molecule (which also affects the solubility), we normalize the molecular fragment counts

by the total size of molecule in terms of number of atoms. Not surprisingly, O containing

fragments have positive impact on the solubility; the higher the number O-containing

fragments the higher the solubility. The O containing fragments are instrumental in

forming hydrogen bonds with water during the solvation process. C denotes C-A single

bonds, where A can be any atom. The presence of single bonds involving C appears to

be favourable for solubility, when at most the count of such bonds is less than 20% of

the number of atoms in the molecule. Cl containing fragments seem to have mixed ef-

fects on solubility. As long as the number of Cl atoms constitute less than 40% of the

total number of atoms (assuming that Cl-Cl fragments do not exist), an increase in the Cl

content of the molecules results in a reduction in solubility. This is expected as halogen

bonds are known to be hydrophobic.7 However, when the Cl content increases further

we see the the solubility of the corresponding molecules increase. This is probably due

to the effect of other atoms and functional groups in the molecule.

As 80% of the molecules in our dataset contain rings, it is also interesting to analyze

how solubility is related to the number of rings. In addition to the specified fragments dis-

cussed above, Figure S4 also shows the relationship between solubility and the number

of rings relative to the molecules size. We find that molecules that have higher numbers

of rings relative to their size tend to have reduced solubility.

In addition to the presence of different molecular fragments, the position and struc-

ture of fragments/functional groups can also have a significant effect on the solubility. As

we will show later in the text, predicting the solubility of positional isomers is a challeng-

ing task. In order to understand the level of solubility variation among groups of similar

molecules, we considered three sets of molecules: (1) positional isomers, (2) molecules

with same core structures but different functional groups, and (3) molecules containing

same number and type of functional groups attached to different core structures. For
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Figure S7: Feature importance of top 10 highly important fragments as determined by
the random forest algorithm.

example, there are 468 groups of molecules in the isomer set, where each such group

consists of n molecules that are isomers of each other. Correspondingly, there are 176

groups of molecules with the same core structure (we excluded isomers from this set)

and 21 groups of molecules having the same number and type of functional groups but

different core structures. The median number of molecules in isomer, same-core and

same-functional-group sets are 2, 4 and 37 respectively. In Figure S8 we compare the

level of solubility variability that exists in these groups relative the level of variability

in random groups of molecules of the same size. We see that in all cases the groups

of similar molecules had less variation in solubility than random groups of molecules.

However, the level of variability among the isomer groups was significantly lower than

the other two group types.
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Figure S8: Average standard deviation of solubilities of molecules in sets of isomer, same
core, and same functional groups.

Graph Neural Network Architecture

The graph neural network architecture leveraged in this work uses an iterative process

called message passing to update the node and edges features during training. At each

iteration, node features of node i (xi) are updated according to, xt
i = γt−1(xt−1

i ,mt−1
i ),

where γt−1 is the update function which is a differentiable function like a multi layer

perception andmt−1
i is the aggregatedmessage coming from the neighboring nodes given

by

mt−1
i = Λj∈N (i) φΘ (xi,xj, ej,i) . (S2)

N (i) are the neighboring atoms to atom i. Λ is a differentiable function that is used

to aggregate the message of a given node with those of its neighboring ones. Usually,

this function is one of summation, mean, or max. φΘ is another differentiable function

like a multi layer perceptron.

For graph convolution networks (GCNs),mt−1
i takes the form,

∑
j∈N(i)

1√
deg(i)

1√
deg(j)

Θ·
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Figure S9: A depiction of how message passing works in a graph neural network.

xt−1i , and the update function is summation.8,9 Thus the node features in a GCN are up-

dated as,

xti =
∑

j∈N(i)

1√
deg(i)

1√
deg(j)

(Θ · xt−1j ), (S3)

where Θ is a weight matrix used to linearly transform the node features and deg(i) is the

degree of the ith node.

We also use an edge convolutional layer10 for which the edge representations are

updated according to,

xt
i =

∑
j∈N (i)

hΘ(xt−1
i ‖xt−1

j − xt−1
i ). (S4)

Here hΘ represents an arbitrary neural network and || denotes concatenation of two

vectors. An illustrated description on the general mechanism of message passing and

aggregation in a graph neural network is shown in Figure S6.

For the GNN considered in this work our node feature vector consists of 65 elements.

1. Atomic symbol (as a one hot encoded vector of [Ag, Al, As, B, Br, C, Ca, Cd, Cl, Cu,

F, Fe, Ge, H , Hg , I, K, Li, Mg, Mn, N, Na, O, P, Pb, Pt, S, Se, Si, Sn, Sr, Tl , Zn,

Unknown]
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2. Degree of the atom (as a one hot encoded vector of [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])

3. Implicit valence of the atom (as a one hot encoded vector of [0, 1, 2, 3, 4, 5, 6])

4. Formal charge

5. Number of radical electrons

6. Hybridization of the atom (as a one hot encoded vector of [SP, SP2, SP3, SP3D,

SP3D2])

7. Is the atom aromatic? (Boolean value)

8. Total number of hydrogen atoms (as a one hot encoded vector of [0, 1, 2, 3, 4])
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Binning solubilities for stratified splitting of the database

into train/test and validation folds

We sample our train and test sets using a stratified sampling approach based on solubility

values.

Figure S10: Binned solubility distribution

Hyper-parameter tuning

The parameters of SMILES, MDM and GNN were tuned using a combination of man-

ual exploration and the hyperopt package.11 For MDM and GNN models, 2000 random

configurations were explored in order to find the best model. For the SMILES model,

35 configurations were considered. As SchNet is computationally expensive to train,

we only changed the number of interaction layers from 6 to 12. We show the hyper-

parameters and corresponding values explored and selected in Table S5. We show the

final architectures of the MDM and GNN models in Figure S11.

S18



Table S5: Hyper-parameters tuned and values explored for eachmodel type. The selected
hyper-parameters can be found in our code at
https://github.com/pnnl/solubility-prediction-paper.

Model Hyper-parameter Values

MDM Neurons in fully connected layers 64 to 640 by 64
Dropout uniform distribution 0-1
Activation relu, selu, sigmoid
Learning rate 10−3,10−2, 10−1

Optimization adam, rmsprop, sgd
Number of fully connected layers 2,3,4,5

GNN Node features graph layers size 64 to 640 by 64
Neurons in fully connected layers 32 to 320 by 32
Dropout uniform distribution 0-1
Activation relu, selu, sigmoid
Learning rate 10−3,10−2, 10−1

Optimization adam, rmsprop, sgd
Number of GCN layers 2,3,4
Number of fully connected layers 2,3,4

3 SMI Embedding dimension 64 to 1088 by 64
Number of LSTM output units 64 to 576 by 64
Neurons in fully connected layers 64 to 1088 by 64
Dropout uniform distribution 0-1
Activation relu, selu, sigmoid
Learning rate 10−3,10−2, 10−1

Optimization adam, rmsprop, sgd
Number of fully connected layers 2,3,4,5

SCH Embedding size for atoms 64 and 128
Number of filters 64 and 128
Number of interactions 3 to 10
Number of layers in MLP 1 to 4
Aggregation mode “sum” and “avg”
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(a) MDM (b) GNN

Figure S11: Final architectures of (a) MDM (implemented using Keras), and (b) GNN
(implemented using PyTorch and PyTorch geometric) models. Input and output dimen-
sions of neural network layers are given inside parenthesis respectively. “do" stands for
dropout rate.
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Molecular Fragments Analysis

A comparison of average errors when molecules consisting of 1-4 fragments is tabulated

in Table S6. Here, the error is defined as |Actual−Predicted| solubility. In general, MDM

makes better predictions for fragmented molecules than the GNN mode.

Table S6: GNN and MDM errors for fragmented molecules in the test set.

fragments GNN error MDM error

1 0.717437 0.694818
2 0.652585 0.569263
3 0.846883 0.744782
4 1.469782 1.538846
>1 0.718044 0.632401
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Cluster Analysis

Figure S12: Ten molecules closest to the 9 cluster centers.
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Figure S13: Highly correlated descriptors with average error corresponding to clusters.

Figure S14: Scatter plot of the mean value of the descriptors versus the cluster error.
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Figure S15: Scatter plot of the mean value of the descriptors versus the cluster label.
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Preparation of isomer, same core and and functional group

sets

Isomer set. First, molecules that have the same core structure and the same number

of atoms for each constituent atom type were selected. Next, the structural similarity

between each pair of molecules in the resulting groups were calculated using MACCS

keys as implemented in RDKit. If the structural similarity for each pair is above a certain

threshold value, the molecules in the group were registered as isomer structures.

Same core set. Core structures were found by sequentially removing molecular frag-

ments from the molecules. The molecular fragments considered for this task and the

order in which they are removed were determined based on trial and error testing. The

resulting structures were then inspected by a chemist and only the structures that he

confirmed as core structures were considered as core structures.

Same functional group set. We sought the help of a chemist to identify twenty

one functional groups out of the most common molecular fragments attached to the

molecules in our database. We then used RDKit to find molecules each functional group

is associated with.

Sterimol parameters

The Sterimol parameters as originally postulated by Verloop, et al. in 1976 laid out met-

rics by which to gauge the sterically localized anomalies of a molecule, or substituent.

The original parameters, physically measured in Angstroms, called for five directions

along the parent molecule’s L-axis, which is defined by the maximum tangential length

running between the specified torsional bond atoms and the molecular Van der Waals

volumetric shell surface.12 This parameter was subsequently revised by the inclusion of

an adjustment weight for a typical carbon-carbon bond. The revised width (B) param-

eters were defined as the smallest distance from the L-axis, and the maximum width as

measured along coordinate system axes, making for a B1 and B5 parameter value.13
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Other steric forms of molecular measure become equally important to consider, such

as the Charton v constant, or the Taft steric parameters; however, what is most salient

about Verloop’s parameters is their versatility in being frequently applied to QSAR stud-

ies, as well as adapted by the inclusion of meaningful quantum information from a

molecule’s ab initio computational studies, such as DFT. This has been notably explored

for parent-derivative compound family-based studies, but continues to lend credence for

potential future use due to the heuristic consideration of varied molecular topologies in

its principle: namely, the space- constrained geometry of a Van der Waals volumetric

shell.14 While the data obtained from Sterimol parameters are highly dependent on the

prudent selection of a spatially centralized torsional bond within the molecule, it is safe

to reason that its enhancement by way of inclusion of data from quantum data-informed

computational molecular studies can prove to be quite powerful.
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