Reannotation of fly amanita L-DOPA dioxygenase gene enables its cloning and heterologous expression

Douglas M. M. Soares,^{a,b} Letícia C. P. Gonçalves,^a Caroline O. Machado,^a Larissa C. Esteves,^a Cassius V. Stevani,^a Carla C. Oliveira,^b Felipe A. Dörr,^c Ernani Pinto,^{c,d} Flávia M. M. Adachi,^b Carlos T. Hotta,^{b,*} and Erick L. Bastos^{a,*}

- ^a Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, 05508-000 São Paulo, SP, Brazil
- ^b Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-000 São Paulo, SP, Brazil
- ^c Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, 05508-000 São Paulo, SP, Brazil
- ^d Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, 13400-970 Piracicaba, SP, Brazil
- * Corresponding authors: hotta@iq.usp.br (CTH), elbastos@iq.usp.br (ELB)

Contents

Material and methods	. S3
General	. S3
Buffers	. S3
Standard compounds	. S3
Apoenzyme preparation	. S4
Kinetic modelling	. S4
Figures	. S6
Tables	S15
References	S16

MATERIAL AND METHODS

General

All chemicals were purchased from Sigma-Aldrich, and used without further purification, unless otherwise stated. Solutions were prepared using deionized water (18.2 M Ω cm at 25 °C, TOC \leq 4 ppb, Milli-Q, Millipore). All values are expressed as the mean \pm standard deviation (SD) of three independent replicates.

Buffers

Sodium phosphate buffer (50 mM, pH 7.4) was prepared by dissolving the appropriate amount of phosphate sodium salt in water, and adjusting the pH to 7.4, with NaOH at 25 °C.

Sodium phosphate lysis buffer (50 mM, pH 7.4, 0.3 M NaCl) was prepared by supplementing the sodium phosphate buffer with imidazole (10 mM), phenylmethanesulfonyl fluoride (PMSF, 1 mM), β -mercaptoethanol (2 mM), and one tablet of cOmplete protease inhibitor cocktail (Roche).

Elution buffer was prepared by supplementing the sodium phosphate lysis buffer with a linear gradient of imidazole from 100 mM to 500 mM.

Standard compounds

Betalamic acid (HBt) was obtained according to the procedure described by Schliemann et al.,¹ with a few modifications. Fresh beetroot juice (200 mL) was paper-filtered and subjected to alkaline hydrolysis using NH₄OH (pH 11.4, 30 min, room temperature [rt]). Next, the solution was cooled in an ice bath, and the pH was adjusted to 3 by slow addition of concentrated HCl. HBt was extracted with ethyl acetate (50 mL, $2\times$), and subjected to chromatographic and spectrophotometric analyses.

L-Dopaxanthin was obtained as described by Schliemann et al.,¹ with minor modifications. HBt in ethyl acetate was obtained from hydrolyzed beetroot juice. The acid was partitioned into water, and the residual organic solvent was evaporated under reduced pressure (80 mm Hg, 25 °C). L-DOPA (50 equiv.) was added to a solution of HBt (5 mL) in water at pH 10. Depletion of HBt, and concomitant appearance of L-dopaxanthin were monitored spectrophotometrically at 430 nm and 470 nm, respectively. After completion, HCl (*conc.*) was added slowly until a pH of 5 was reached. The product was purified by gel chromatography using Sephadex LH-20 as the stationary phase and water as the eluent. Final characterization was carried out using LC-HRMS.

Apoenzyme preparation

Sodium phosphate buffer (50 mM, pH 8.5) was treated with Chelex-100 (50 mg mL⁻¹) for 24 h, and filtered, and the pH was confirmed and adjusted when necessary (Ch-PB). Stock solutions of ascorbic acid (250 mM) and L-DOPA (5 mM) were prepared using Ch-PB. The stock solution of AmDODA in sodium phosphate buffer (1.12 mg mL⁻¹, 50 μ M, 10 μ L) was diluted 100-fold using Ch-PB and Chelex-100 (50 mg). pH of the supernatant was measured prior to use. The mixture was incubated at 4 °C and 450 rpm using an orbital mixer, and aliquots were taken every 30 min until the activity of the enzyme treated with Ch-PB was lost (3.5 5 h). Activity of the enzyme prepared with Ch-PB was compared to that of the negative control. All solutions were prepared using sodium phosphate buffer and incubated under the same conditions.

Kinetic modelling

To model the kinetics of 2,3-seco-DOPA, 4,5-seco-DOPA, betalamic acid, muscaflavin, L-dopaxanthin, and L-DOPA hygroaurin formation, the observed rate constants (k_{obs}) for the formation and/or consumption of these intermediates and products were calculated by non-linear fitting of the chromatographic data to mono- or biexponential functions using Origin 2016 software (OriginLab). Next, a minimal kinetic model was used to investigate the conversion of 1.0 mM L-DOPA into L-dopaxanthin and L-DOPA hygroaurin using COPASI v.4.22.² For simplicity, all elementary reactions were defined as unimolecular and irreversible, and the values of k_{obs} were

used to develop the model, ensuring that the resulting kinetic profile was qualitatively similar to the experimental data. The maximum theoretical concentration of each intermediate and product was divided by the maximum experimental absorption measured by HPLC-PDA analysis. The resulting factor was used to calculate the relative concentration of each species based on the experimental absorption. Changes in the concentration of each species over time were fitted to different kinetic models, and the first-order rate constants were calculated using the evolution programming method.

FIGURES

	1 10	20		30	40	50	60 70
Consensus sequence for clone 1 AB015700 1	GGAAGTAAAAGT	CGTAACAAG	GTTTCCGT	AGGTGAAC	CTGCGGAAG		
Consensus sequence for clone 2	GGAAGTAAAAGT	GTAACAAG	GTTTCCGT	AGGTGAAC	CTGCGGAAG	SATCATTATTG	AAGAAACCTCAGGCAGGGGG
AB080779.1	GGAAGTAAAAGT	CGTAACAAG	GTTTCCGT	AGGTGAAC	CTGCGGAAG	GATCATTATTG	AAAGAAACCTCAGGCAGGGGG
	80 90		100	110	120	130	140 150
Consensus sequence for clone 1 AB015700 1	AGATGGTTGTAG		AGGGGGCAT	GTGCACAC	TGTGTCTCTC	TTGCTTGTTT	
Consensus sequence for clone 2	AGATGGTTGTAG	TGGCCTCT	AGGGGCAT	GTGCACAC	TGTGTCTCTC	TTGCTTGTTT	TTCATTCTCTCCACTTGTGC
AB080779.1	AGATGGTTGTAG	CTGGCCTCT	AGGGGCAT	GTGCACAC	TGTGTCTCTC	TTGCTTGTTT	CTTCATTCTCTCCACTTGTGC
	160	170	180	190	200	210	220 230
Consensus sequence for clone 1	ACTGCTTGTAGG	CAGCCCTGG	CATTGTTC	AGGCTGTC	TATGATTTT	ATTTACATACAT	FGAACAATTGTTGTACAGAAT
AB015700.1	ACTGCTTGTAGG	CAGCCCTGG	CATTGTTC	AGGCTGTC	TATGATTTT	ATTTACATACA	FGAACAATTGTTGTACAGAAT
Consensus sequence for clone 2	ACTGCTTGTAGG		CATIGITC	AGGCIGIC	TAIGATITI	ATTTACATACA	I GAACAATIGII GIACAGAAT
AB080779.1	ACTGCTTGTAGG		CATIGITC	AGGCIGIC	. TATGATTTA		
Concerns of the slave 1	CTCATAAA AAAA		AACTTTCA	ACAACCC	TCTCTTCCC		
AB015700 1	GTGATAAA-AAA	TAGTAATAC	AACTTTCA	ACAACGGA	TCTCTTGGC	CTCGCATCGAT	TGAAGAACGCAGCGAAATGCG
Consensus sequence for clone 2	GTGATAAAAAAAA	TAGTAATAC	AACTTTCA	ACAACGGA	TCTCTTGGCT	TCTCGCATCGAT	TGAAGAACGCAGCGAAATGCG
AB080779.1	GTGATAAAAAAAA	TAGTAATAC	AACTTTCA	ACAACGGA	TCTCTTGGCT	ICTCGCATCGA	TGAAGAACGCAGCGAAATGCG
	320	330	340		350	360 33	70 380 390
Consensus sequence for clone 1	ATAAGTAATGTG	AATTGCAGA	ATTCAGTG	AATCATCO	GAATCTTTGAA	ACGCATCTTGC	SCTCCTTGGTATTCCGAGGAG
AB015700.1	ATAAGTAATGTG	AATTGCAGA	ATTCAGTG	AATCATCO	GAATCTTTGA	ACGCATCTTGC	GCTCCTTGGTATTCCGAGGAG
Consensus sequence for clone 2	ATAAGTAATGIG	AATTGCAGA	ATTCAGIG	AATCATCO	AAICIIIGAA	ACGCATCTTGCC	JCICCIIGGIATICCGAGGAG
AB080779.1	ATAAGTAATGTG.	AATIGCAGA	ATTCAGIG		JAATCTTTGAA	ACGCATCIIGCO	JCTCCTTGGTATTCCGAGGAG
Company and the share 1	CATCCCTCTTTC	ACTCTCA	A A A TTCTC	+	TCCACTTCA	TCTCTTTCC	
AB015700.1	CATGCCTGTTTG	AGTGTCATT	AAATTCTG		TGCACTTGA	TGTGTTTTGG	ATTGTGGGAGTGTCTGCTGGC
Consensus sequence for clone 2	CATGCCTGTTTG	AGTGTCATT	AAATTCTG	TCAAAACA	TGCACTTGA	STGTGTGTTTTGG	ATTGTGGGAGTGTCTGCTGGC
AB080779.1	CATGCCTGTTTG	AGTGTCATT	AAATTCTG	TCAAAACA	TGCACTTGA	GTGTGTTTTGG/	ATTGTGGGGAGTGTCTGCTGGC
	470 480		490	500	510	520	530 540
Consensus sequence for clone 1	TTTATGAGCCAG	CTCTCCTGA	AATACATT	AGĊTTTGO	GGGGGĠAGGT	GCCAAGTCACT	FCTGCCTTTCCATTGGTGTGA
AB015700.1	TTTATGAGCCAG	CTCTCCTGA	AATACATT	AGCTTTGG	GGGGGGAGGT	SCCAAGTCACT	FCTGCCTTTCCATTGGTGTGA
Consensus sequence for clone 2	TTTATGAGCCAG	CICICCIGA	AATACATT	AGCITIGO	GGGGGGAGGI	JCCAAGICACI	I C I G C C I I I C C A I I G G I G I G A
AB080779.1	TTATGAGCCAG	CICICCIGA	AATACATT	AGCITIGO	GGGGGGAGGIG	JCCAAGICACI	ICIGCCTTICCATIGGIGIGA
Concernant of the slower 1			CCCACCAA	ACCACCT			
AB015700.1	TAGATGAATTAA		GCCAGGAA	AGCAGGCT	TCAGGTGAT	SCACTGTGATC	
Consensus sequence for clone 2	TAGATGAATTAA	CTTATCTAC	GCCAGGAA	AGCAGGCT	TCAGGTGAT	SCACTGTGATC	ICTCTCTGCTCTCTAATTGAC
AB080779.1	TAGATGAATTAA	CTTATCTAC	GCCAGGAA	AGCAGGCT	TCAGGTGAT	GCACTGTGATC	TCTCTCTGCTCTCTAATTGAC
	630	640	650	660	670	680	690 696
Consensus sequence for clone 1	ATTTGTCTGATA	ACTTGACCT	CAAATCAG	GTAGGAĊT	асссбстба́л	ACTTAAGCATAT	FCAATAAGCGGAGGA
AB015700.1	ATTTGTCTGATA	ACTTGACCT	CAAATCAG	GTAGGACT	ACCCGCTGA	ACTTAAGCATAT	FCAATAAGCGGAGGA
Consensus sequence for clone 2	ATTTGTCTGATA	ACTTGACCT	CAAATCAG	GTAGGACT	ACCCGCTGA	ACTTAAGCATA	FCAATAAGCGGAGGA
AB080779.1	ATTIGTCTGATA	ACTTGACCT	CAAATCAG	GTAGGACT	ACCCGCTGA	ACTTAAGCATA	FCAATAAGCGGAGGA

Figure S1. Multiple alignment between two consensus sequences obtained from the DNA sequencing of internal transcribed spacer elements (ITS1 and 2) of the nuclear rDNA cluster in the *A. muscaria* specimens collected in Brazil, and two *A. muscaria* ITS sequences deposited in the NCBI nucleotide database (GenBank AB015700.1 and AB080779.1).

1	acatgcgctt	cgtcactcaa	atatatccat	tggtttcgcg	acacgctggt	tccgaaccca
61	gagagtctcg	cgactctctt	cagaaattct	cccaacttgc	gttccttcaa	cacccctttg
121	gtgcccgcgg	cagaggactg	cgacagttag	ccatgacgga	ttctttcatt	cctctctgac
181	gactatccat	gcagaggcca	ggattctgga	ctatgctagt	cctatcccac	ctcatctcat
241	gaaccttcct	tctctacgcc	agatgtcctt	cgttgttcct	ctttcgccgg	gcagacgcac
301	gttggcgcag	tttcctcgag	tggcatggtt	cacgtttaca	gcatatccaa	gctttgattt
361	accttgcagg	gaaccacttc	cagtccgact	tggcctacat	tgcatcatca	tgccgcaacc
421	ttcttagact	cgatcttgct	ttctcccatt	ggacggcata	tgccgtttcc	tgttagcctc
481	ccgcctacag	tggaacatct	gggcatcttt	tgtactcagg	gtcagatcgc	caactaccag
541	acgttcttct	ctcgtttaga	taggatcgag	tatggtgcca	agettegttg	tatacagttc
601	ttgggtaaac	ggacgtcaga	gatatattcg	acaagcattt	gcatcaattc	tggtctggca
661	cgaggcgact	aagaggtagt	ggggttagat	tcatgaatca	tagaggggca	tgtatagcgt
721	agctaaggat	agcactggca	gttccacagt	tctatataat	ccgtgatacg	actctctcgt
781	tcccctcaca	tactaccatg	tccaccaage		ccttcaaact	gtcctcgaca
841	gcgaaatcaa	gtttgtctag	tttgtctcca	ctagcaaaaa	ctctgctgac	ttgtgtacag
901	ggaatggcac	tttcgtcagt	cgaccaagca	acgactaact	tatgtagctc	aaattgaccc
961	tgcaactaat	ag <mark>acatctac</mark>	tttcatcaga	acaacgccgc	agagcatcaa	gctgcgcttg
1021	agcttcgtga	cgcggttctg			attcgtcgcc	gttcccttgt
1081	tccgcgttaa			atcctgtcgg	tcagtagtca	tcgcaatcac
1141	accaccagtc	cttgaacaag	tcccttgact	ctcaag <mark>gttc</mark>	ttatgagatc	tgggttccgt
1201	ctgaaacgtt	cgcttccgtg	ttctcctact	tgtgcatgaa		ttaagcatcc
1261	ttgtgcatcc	tttgacacgc			aattcgtaat	gcctggatag
1321	gaccctcttt			taccgatcaa		atccctttgc
1381	aatatccaag	cctcagtatg	tcatctcacc	actctctggc	ggccctcagt	gacaaattgt
1441	tgcagagctt	gggtactcat	cgacagcgca	taagatgtca	ttggaagaaa	ggcggaaatt
1501	aggcgacgat		tgettagggg			cgccccatcg
1561	agatgcatag	agctacattc	gattgtctat	attgctactq	acatagggta	atgttggaat
1621	tttctgccc	-			222	
	-					

Figure S2. DNA sequence for *dodA* (Hinz *et al.*, 1997; GenBank accession Y12886, NCBI). *dodA* exons are highlighted in blue and the inferred 3'-AG splice site, altered to GA in *A. muscaria* specimens analyzed, is highlighted in yellow. The start codon for 558-bp CDS is shown in red.

MVPSFVVYSSWVNGRQRYIRQAFASILFYIIRDTTLSFPSHTTMSTKPETDLQTVLDSEIKEWHFHIYFHQNNAAEHQ AALELRDAVLRLRQDGAFVAVPLFRVNMDPMGPHPVGSYEIWVPSETFASVFSYLCMNRGRLSILVHPLTREELRDHE IRNAWIGPSFPLNLANLPIKSDEIPLQYPSLKLGYSSTAHKMSLEERRKLGDDIEAVLRGEKEAARAPHRDA-

Figure S3. Amino acid sequence inferred for 228-aa AmDODA encoded by dodA (full sequence)³ and the 185-aa AmDODA fragment (highlighted).

Figure S4. Effect of ascorbic acid (AscH) on the oxidative cleavage of L-DOPA catalyzed by AmDODA. Absorption at 414 nm of the conversion of L-DOPA (1 mM) by AmDODA (1 μ M) in the presence or absence of 1 or 10 mmol L⁻¹ AscH in sodium phosphate buffer (50 mM), pH 8.5.

Figure S5. Effect of the presence (left) or absence (right) of ascorbic acid (AscH) in the standard reaction without AmDODA. Picture credit: Dr. Douglas M. M. Soares.

Figure S6. HPLC of 4,5-seco-DOPA and 2,3-seco-DOPA formed during oxidative cleavage of L-DOPA catalyzed by AmDODA, and the derived compounds (betalamic acid, muscaflavin and dopaxanthin). (a) Reaction products monitored by HPLC. (b) Chromatograms obtained at 390 nm (seco-DOPA), 410 nm (betalamic acid and muscaflavin), and 472 nm (dopaxanthin). Note that *t* corresponds to the time of injection after the reaction was triggered. (c) Spectra of the peaks of the reaction products with retention times: 8.1 min (383 nm, 4,5-seco-DOPA), 8.7 min (385 nm, 2,3-seco-DOPA), 10.7 min (466 nm, L-dopaxanthin), 11.3 min (405 nm, betalamic acid), 12.5 min (400 nm, muscaflavin). Reaction condition: [AmDODA] = 1 μ M, [AscH] = 10 mM, [L-DOPA] = 2.5 mM, sodium phosphate buffer (50 mM), pH 8.5.

Figure S7. Effect of incubation with Chelex-100 on the oxidative cleavage of L-DOPA catalyzed by AmDODA. (a) Absorption at 414 nm for AmDODA (0.24 mg/mL) incubated at 4 °C under agitation (450 rpm), with or without Chelex-100, in sodium phosphate buffer (50 mM), pH 8.5. (b) Specific activity (U/mg) at the same conditions. Reaction condition: [AmDODA] = 1 μ M, [AscH] = 10 mM, [L-DOPA] = 1 mM, sodium phosphate buffer (50 mM), pH 8.5.

Figure S8. Comparison of HPLC-PDA-MS(ESI) and MS/MS analysis of the substances with retention time of 14.7 min and 17.1 min, which were characterized as betalamic acid and muscaflavin.

Figure S9. Kinetic modelling for the oxidative cleavage of L-DOPA by oxygen in the presence of AmDODA.

Figure S10. Multiple alignment of amino acid sequences of functionally characterized DODAs from fungi (*A. muscaria* – AmDODA), bacteria (*Gluconacetobacter diazotrophicus* – GdDODA, *Anabaena cylindrica* – AcDODA, *Escherichia coli* - EcDODA), insect (*Bombyx mori* – BmDODA) and plants (*Mirabilis jalapa* – MjDODA, *Beta vulgaris* – BvDODA and *Portulaca grandiflora* – PgDODA). Similarity of residues is indicated by colors: black for 100%, dark gray for 80-100%, and light gray for 60-80%. Not highlighted residues are less than 60% similar. The horizontal colors group sequences together according to similarity.

Figure S11. Catalytic pocket and amino acid residues located at regions I and II of AmDODA.

Figure S12. Multiple alignment of amino acid sequences of fungal L-DOPA-dioxygenases (MUSCLE, Geneious Prime v11.0.4).

TABLES

Table S1. Alignments showing the main-chain root-mean-square deviation (RMSD, in Å) below
the diagonal, and the number of overlapping residues above the diagonal.

Protein	1	2	3	4
AmDODA_Hinz et al. (1)		121	99	106
AmDODA (2)	0.504		99	106
AcDODA (3)	1.010	0.994		99
GdDODA (4)	0.875	0.853	0.744	

 Table S2. Homology models used for the metal cation binding sites of DODAs.

Rank	Template	Confidence	Coverage	Seq. id.	E-value	z-score			
AmDODA , TM-score = 0.667									
1	2P8I_D	100	62.2	40.0	4.9E–51	85.540			
2	2PEB_A	100	61.1	39.8	5.8E-50	82.898			
GdDODA , TM-score = 0.790									
1	2P8I_D	100	79.6	45.2	9.7E-50	87.542			
2	2PEB_A	100	79.6	43.4	2.2E-50	87.532			
AcDODA, TM-score = 0.907									
1	2PEB_A	100	94.1	69.9	2.2E–51	84.713			
2	2P8I_D	100	95.0	45.2	9.9E-51	82.726			

REFERENCES

1. Schliemann, W.; Kobayashi, N.; Strack, D., The decisive step in betaxanthin biosynthesis is a spontaneous reaction. *Plant Physiol* **1999**, *119* (4), 1217-1232.

 Hoops, S.; Sahle, S.; Gauges, R.; Lee, C.; Pahle, J.; Simus, N.; Singhal, M.; Xu, L.; Mendes, P.; Kummer, U., COPASI—a COmplex PAthway SImulator. *Bioinformatics* 2006, 22 (24), 3067-3074.

3. Hinz, U. G.; Fivaz, J.; Girod, P. A.; Zrÿd, J. P., The gene coding for the DOPA dioxygenase involved in betalain biosynthesis in *Amanita muscaria* and its regulation. *Mol Gen Genet* **1997**, *256* (1), 1-6.