1 Supplementary materials

3	Methylation-dependent	and	-independent	roles	of	EZH2	synergize	in	CDCA8	
---	-----------------------	-----	--------------	-------	----	------	-----------	----	-------	--

- 4 activation in prostate cancer
- 5
- 6 Yang Yi, Yanqiang Li, Chao Li, Longxiang Wu, Dongyu Zhao, Fuxi Li, Ladan Fazli,
- 7 Rui Wang, Long Wang, Xuesen Dong, Wei Zhao, Kaifu Chen, Qi Cao
- 8
- 9 **Contents**
- 10 Supplementary Figures 1-6
- 11 Supplementary Table 1, 4 and 5
- 12

14 Supplementary Figure 1. Dysregulation of CPC members other than CDCA8 in

15 **PCa**

13

16 (A) Box plots showing the mRNA levels of AURKB, BIRC5 and INCENP in normal

17 (n=52) and PCa (n=497) specimens using data from TCGA.

- 18 **(B)** Box plots showing the mRNA levels of AURKB, BIRC5 and INCENP in PCa 19 patients with different clinical stages ($n_{(early)}=177$, $n_{(middle)}=173$, $n_{(late)}=53$) using data 20 from TCGA.
- 21 (C) Box plots showing the mRNA levels of AURKB, BIRC5 and INCENP in PCa
- patients with different pathological stages ($n_{(early)}=186$, $n_{(middle)}=293$, $n_{(late)}=10$) using data from TCGA.
- 24 (D) Box plots showing the mRNA levels of AURKB, BIRC5 and INCENP in PCa
- patients with different PSA levels (n_(low)=181, n_(middle)=209, n_(high)=48) using data from
 TCGA.
- 27 (E) The association between AURKB, BIRC5 or INCENP expression and Disease-free
- survival time of PCa patients was analyzed by Kaplan-Meier analysis using data from
- 29 TCGA.
- 30

32 Supplementary Figure 2. CDCA8 maintains the aggressiveness of PCa cells

(A) Cell viability assay was used to assess the proliferative capacity of control and
 CDCA8-deficient PC-3 cells. The knockdown efficiency of CDCA8 was validated by
 western blot.

36 **(B)** Boyden chamber migration assay was performed to determine the migratory 37 capability of PC-3 cells after CDCA8 depletion. Graph showing the number of migrated 38 cells in the lower surface of filter at 24 h. Data represent Mean \pm SD from n=5 random 39 fields per filter.

40 (C) Boyden chamber invasion assay was performed to determine the invasive capability

- 41 of PC-3 cells after CDCA8 depletion. Graph showing the number of migrated cells
- 42 passing through Matrigel at 24 h. Data represent Mean \pm SD from n=5 random fields

- 43 per filter.
- 44 (D) Flow cytometry assays were performed to analyze the apoptotic rate in control and
- 45 CDCA8-deficient C4-2 cells. Graph showing the percentage of apoptotic cells at each

46 group.

- 47 (E) Western blot analysis of the protein levels of full-length and cleaved PARP or
- 48 Caspase-3 in C4-2 cells upon CDCA8 knockdown.
- 49 *, P < 0.05, **, P < 0.01, ***, P < 0.001 is based on the student's t-test unless otherwise
- 50 stated. Values are mean \pm SD of three independent experiments.

53 Supplementary Figure 3. CPC members other than CDCA8 are positively 54 correlated with EZH2 in PCa

- (A) Box plot showing the mRNA level of EZH2 in normal (n=52) and PCa (n=497)
- 56 specimens using data from TCGA.
- 57 (B) Scatter plots showing the relationship between AURKB/BIRC5/INCENP and
- 58 EZH2 expressions using data from TCGA, with Spearman correlation coefficient (R)
- 59 and P values as indicated. TPM, transcript per million.
- 60

62 Supplementary Figure 4. EZH2 regulates transcription of CDCA8 and other CPC

- 63 members
- 64 (A) RT-qPCR analysis of the mRNA levels of CDCA8 and other CPC members in PCa
- 65 cell lines upon EZH2 knockdown.

- 66 (B) RT-qPCR analysis of the mRNA levels of CDCA8 and other CPC members in C4-
- 67 2 cells after treatment of EZH2 inhibitors as indicated.
- 68 (C) RT-qPCR analysis of the mRNA levels of CDCA8 and other CPC members in PCa
- 69 cell lines upon EZH2 overexpression.
- 70 (D) KEGG graphs showing the dysregulated genes in cell cycle pathway upon CDCA8
- 71 knockdown or EZH2 knockdown in C4-2 cells.
- *, P < 0.05, **, P < 0.01, ***, P < 0.001 is based on the student's t-test unless otherwise
- stated. Values are mean \pm SD of three independent experiments.

Supplementary Figure 5. Repression of let-7b is partially responsible for the
 EZH2-mediated CDCA8 upregulation in PCa

(A) Cell viability assay showing that overexpression of CDCA8 could rescue the
decreased proliferation rate in C4-2 cells treated with let-7b mimics. The protein level
of CDCA8 in each group was detected by western blot. EV, empty vector.

81 **(B)** Boyden chamber migration assay showing that overexpression of CDCA8 could 82 rescue the decreased migration rate in C4-2 cells treated with let-7b mimics. Graph 83 showing the number of migrated cells in the lower surface of filter at 24 h. Data 84 represent Mean \pm SD from n=5 random fields per filter.

85 (C) Boyden chamber invasion assay showing that overexpression of CDCA8 could 86 rescue the decreased invasion rate in C4-2 cells treated with let-7b mimics. Graph 87 showing the number of migrated cells passing through Matrigel at 24 h. Data represent 88 Mean \pm SD from n=5 random fields per filter.

- 89 (D) Rescue assay showing that treatment of let-7b inhibitor could not fully restore the
- 90 downregulation of CDCA8 in EZH2-deficient PC-3 cells, as measured by western blot.
- 91 Graph represents the relative CDCA8 protein level in each group.
- 92 *, P < 0.05, **, P < 0.01, ***, P < 0.001 is based on the student's t-test unless otherwise

93 stated. Values are mean \pm SD of three independent experiments.

97 than CDCA8 in PCa

- 98 (A) RT-qPCR analysis of the mRNA level of E2F1 in PCa cell lines upon EZH2
 99 knockdown.
- 100 (B) Scatter plot showing the relationship between AURKB/BIRC5/INCENP and E2F1
- expressions using data from TCGA, with Spearman correlation coefficient (R) and Pvalue as indicated.
- 103 (C) RT-qPCR analysis of the mRNA levels of all CPC members in PCa cell lines upon
 104 E2F1 knockdown.
- 105 (D) ChIP-qPCR assay to monitor the enrichment of E2F1 at the promoter region of
- 106 AURKB/BIRC5/INCENP in C4-2 cells. Two pairs of primers (F1 and F2) were used to
- 107 amplify fragments inside AURKB/BIRC5/INCENP promoter region while another pair
- 108 of primers (NC) targeting nearby region was used as negative control.
- 109

110 Supplementary Table 1. PCa TMA IHC data revealed correlation between

111 expressions of CDCA8 and EZH2

Pearson r Correlation				
CDCA8 vs. EZH2				
Pearson r				
r	0.8234			
95% confidence interval	0.7569 to 0.8730			
R squared	0.6779			
P value				
P (two-tailed)	< 0.0001			
P value summary	****			
Significant? (alpha = 0.05)	Yes			
Number of XY Pairs	124			

112

Target	Source	Application (Dilution)			
CDCA8	Abcam, Cat#ab74473	IHC (1:50), WB (1:1000)			
AURKB	Sigma, Cat#MABE627	WB (1:1000)			
BIRC5	Cell signaling, Cat#2808	WB (1:1000)			
INCENP	Abcam, Cat#ab12183	WB (1:1000)			
EZH2	Cell signaling, Cat#5246	IHC (1:50), WB (1:1000), ChIP-			
		qPCR (1:100)			
E2F1	Cell signaling, Cat#3742	WB (1:1000), ChIP-qPCR (1:100)			
ACTIN	Cell signaling, Cat#3700	WB (1:1000)			
GAPDH	Cell signaling, Cat#5174	WB (1:1000)			
Histone H3	Cell signaling, Cat#4499	WB (1:1000)			
H3K27me3	Cell signaling, Cat#9733	WB (1:1000), ChIP-qPCR (1:100)			
LC3A/B	Cell signaling, Cat#12741	WB (1:1000)			
p62/SQSTM1	Cell signaling, Cat#88588	WB (1:1000)			
PARP	Cell signaling, Cat# 9532	WB (1:1000)			
Caspase-3	Cell signaling, Cat#9662	WB (1:1000)			

114 Supplementary Table 4. Antibodies used in this study

Name	Sequence (5'to 3')	Application	
GAPDH	F: GGAGCGAGATCCCTCCAAAAT	RT-qPCR	
	R: GGCTGTTGTCATACTTCTCATGG		
CDCA8	F: GAAGGGCAGTAGTCGGGTG	RT-qPCR	
	R: TCACGGTCGAAGTCTTTCAGA		
AURKB	F: CAGTGGGACACCCGACATC	RT-qPCR	
	R: GTACACGTTTCCAAACTTGCC		
BIRC5	F: AGGACCACCGCATCTCTACAT	RT-qPCR	
	R: AAGTCTGGCTCGTTCTCAGTG		
INCENP	F: AAGCTCATGGAGTTTCTCTGC	RT-qPCR	
	R: CGTCTCTTCTTCCGTCGGTTC		
E2F1	F: ACGCTATGAGACCTCACTGAA	RT-qPCR	
	R: TCCTGGGTCAACCCCTCAAG		
let-7b promoter	F: CCCCAGGAAGGTGGTAGCC	ChIP-qPCR	
-F1	R: GGACAGAGTGTAGCATGAGGATGA		
let-7b promoter	F: GTGACAGCGTCGCAAAATG	ChIP-qPCR	
-F2	R: GCAGGAAACCACCAACCAG		
let-7b promoter	F: ACGGGGCAGCCACCAA	ChIP-qPCR	
-NC	R: TGAGGGAGGACGGAAGGAC		
CDCA8 promoter	F: AGCAGAATCCTACAGCCGACC	ChIP-qPCR	
-F1	R: GCGAACTATACAAACTACTACTCCCG		
CDCA8 promoter	F: CGCATTGGGCGGAAGA	ChIP-qPCR	
-F1	R: CCCGAGACAAGGGCTGAG		
CDCA8 promoter	F: CAAGACCCGTGTGCGAGC	ChIP-qPCR	
-NC	R: TGTTGATTACATCAGGGAGCGT		
AURKB promoter	F: TCAGAGGGTCCGTTGGGC	ChIP-qPCR	
-F1	R: CCGTGAGAAGCAGAGAAAAAGAG		
AURKB promoter	F: CTAAACTGGAAGCCAAGCGTG	ChIP-qPCR	

117 Supplementary Table 5. Primers used in this study

-F2	R: TCCAAGGCACTGCTACTCTCC	
AURKB promoter	F: TGCCTCCCAGGTTCAAGC	ChIP-qPCR
-NC	R: GCCAACACAGTGAAACCCC	
BIRC5 promoter	F: ACTCAAGTGATGCTCCTGCCT	ChIP-qPCR
-F1	R: CGACTGCTTTCAAAGAACGC	
BIRC5 promoter	F: AGGACTTACTGTTGGTGGGACG	ChIP-qPCR
-F2	R: TGACTGCACGACCTGGGTTT	
BIRC5 promoter	F: TGGCAGCCCCACACAGA	ChIP-qPCR
-NC	R: AAGGAAAGCATGAGCACGACT	
INCENP promoter	F: TTGGTTGGGAACTGTGGACTT	ChIP-qPCR
-F1	R: GGGGTCTGGGGGCTTTCTC	
INCENP promoter	F: GTGTTTTCTCTTGCTCAATGCTT	ChIP-qPCR
-F2	R: CCTCCCACAACCCTCTCCC	
INCENP promoter	F: CCTCATCTGGCGATTGTGTC	ChIP-qPCR
-NC	R: TGTAAAGCAAGTAGGTTGGGTCA	
E2F1 promoter	F: CGCCGTTGTTCCCGTCA	ChIP-qPCR
-F1	R: CGCCGCTGCCTGCAAAGT	
E2F1 promoter	F: GCCTATGTTCCGGTGTCCC	ChIP-qPCR
-F2	R: GCGGCGGTTCCTATTGG	
E2F1 promoter	F: AGACGGGGAGCATCACAGG	ChIP-qPCR
-NC	R: CCCTCATCCCTCACCACAGA	