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Preparation method of 0.16%-Pt/m-TiO2 catalyst

0.16%-Pt/m-TiO2 catalyst was prepared by wet impregnation. The procedure of making the 0.16%-Pt/m-TiO2 

catalyst is described as: 1 g m-TiO2 support (mixed phase of rutile and anatase , Aldrich®) was dispersed in 

9.58 ml of deionised water in a beaker and stirred for 10 min. Then 0.42 ml of the metal precursor solution 

(C = 0.01 g ml−1, H2PtCl6·6H2O dissolved in deionised water, Honeywell Fluka®) was added into the TiO2 

slurry. The mixture was stirred at 60 °C for 4 h, and the resulting catalyst was dried at 150 °C for 2 h and 

calcined in air at 500 °C for 2 h. Prior to the catalytic test, catalyst were reduced in pure H2 at 200 °C for 30 

min.

Fig. S1.  Schematic structure of cellulose.  

Fig. S2. Time course of H2 production from photoreforming of MCC-0 and BM treated MCCs. Reaction conditions: 

100 mg of substrate, 75 mg of 0.16 wt.% Pt/m-TiO2 catalyst, 100 ml distilled water under the irradiation of UV-A lamp 

(incident photon rate: 62 µmol h−1 photons, 1 mol (6.0223×1023)  is 1 Einstein of photons.) at 40 °C for 5 hours. 
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Fig. S3. Distribution of the averaged H2 production rate (rH2, black scatters) and quantum yield (Φa, red scatters) from 

the photoreforming systems as a function of DP of the MCC-0 and BM-treated MCCs.
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Fig. S4. SEM images of (a) MCC-0, (c) BM-2 (e) BM-16 (g) BM-24, and particle size distribution of (b) MCC-0, (d) 

BM-2 (f) BM-16 (h) BM-24.
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ATR-IR characterisation of ball-milled MCCs 

The conversion of cellulose I to amorphous cellulose after BM was also supported by ATR-IR 

characterisation as shown in Fig. S5. In detail, the disappearance of cellulose I IR absorption bands at 1106, 

1315, 1335 and 1428 cm−1 in the BM-treated MCCs, and a band at 897 cm−1 representing amorphous 

cellulose were observed. Both XRD and ATR-IR characterisation showed the effectiveness BM for 

amorphising the MCC after ≥2 h treatment.

Fig. S5. ATR spectra of the MCC-0 (black spectrum), BM-0.5 (red spectrum) and BM-24 (blue spectrum).
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Deconvolutions of 13C chemical shifts in C4 region of MCCs from ss NMR charaterisation

In the C4 region of cellulose I (Fig. S6f), the 13C chemical shifts were assigned to 4 crystalline signals (I-α: 

89.4 ppm, I-β: 87.8 ppm, I-γ: 88.8 ppm, and I-δ: 88.4 ppm), and a broad signal for amorphous cellulose (A-α: 

83.8 ppm).1 While, in the C4 region of cellulose II (as shown in Fig. S6g), the 13C chemical shifts were 

assigned to 4 crystalline signals (II-a: 87.5 ppm, II-b: 88.66 ppm, II-c: 86.3 ppm and II-d: 84.8 ppm), and 2 

broad signals for amorphous cellulose (A-a: 82.85 ppm and A-b: 79.6 ppm).2

Fig. S6.  13C ssNMR spectra of (a) MCC-0, (b) BM-0.5-REC, (c) BM-2-REC, (d) BM-6-REC, and (e) BM-24-REC. 

Examples of deconvoluted 13C ssNMR spectra for (f) crystalline cellulose I with amorphous cellulose in C4 region of 

MCC-0: crystalline residue α (I-α), residue β (I-β), residue γ (I-γ), para-crystalline residue δ (I-δ), and amorphous 

cellulose (A-α); and for (g) crystalline cellulose II with disordered cellulose in C4 region of BM-24-REC: crystalline 

residue a (II-a), residue b (II-b), residue c (II-c), residue d (II-d), amorphous a (A-a) and amorphous b (A-b).  
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Table S1. Crystalline index (CrI) calculated from 13C ssNMR in C4 and C6 regions of cellulose I and cellulose II, and 

relative intensity of 13C signal in glucose C1 region

C4 region (%)a C6 region (%)a Glucose C1 Sample 

CrII-NMR CrIII-NMR Ab CrII-NMR CrIII-NMR Ab (%)c

MCC-0 55.6 0 44.4 54.6 0 45.4 0

BM-0.5-REC 57.6 36.6 63.1 46.7 28.2 68.0 3.8

BM-2-REC 47.8 41.3 55.5 25.5 38.1 63.1 5.4

BM-6-REC 0 53.3 46.7 0 48.7 51.3 5.5

BM-24-REC 0 56.4 43.6 0 57.5 42.6 5.5

a The total % can be > 100 %, because the relative weight of CrII and CrIII is not taken into account here, i.e., it should 

be  ~100, where in the C4 region: x = 0, 62, 79, 100, 100, and in the C6 region: x = 0, 60, 79, I II(1 ) ( )x CrI x CrI A  

100, 100 for MCC-0, BM-0.5-REC, BM-2-REC, BM-6-REC and BM-24-REC, respectively; bthe relative proportion of 

amorphous cellulose in C4 and C6 regions in the recrystallized BM-treated MCC, eq. (5) in the manuscript; cthe relative 

proportion of the 13C signal in glucose C1 region to the total amount of cellulose signals from the C1 region.

ATR-IR characterisation of water-exposed BM-treated MCCs

Recrystallisation of the BM-treated MCCs to cellulose II upon water exposure was also evidenced by ATR-

IR  and shown in Fig. S7). IR bands between 3230 and 3488 cm−1 (OH stretching region) assigned to inter 

and intra molecular H-bonding in cellulose3, 4 changed significantly after BM (Fig. S7 a–c), which suggests 

the structural disruption of cellulose I. In addition, a band at ⁓2918 cm−1 representing the formation of 

amorphous cellulose5 was observed for the BM-treated MCCs, which was stronger for the as-prepared BM-

treated MCCs (Fig. S7c) and weaker for the recrystallised counterparts (Fig. S7b). A shift from 2897 to 2876 

cm−1 was also observed for the BM-treated MCCs (Fig. S7b and S7c), which suggests the conversion of 

cellulose I to amorphous/cellulose II.6

 ATR spectra of the BM-treated MCCs show the band at 897 cm−1 corresponding to the emergence of 

amorphous cellulose. This band intensity is similar in all the IR spectra irrespective of BM treatment time 

(Fig. S7d) with only small differences in BM-0.5 spectra. However, for the recrystallised MCCs, there is a 

steady increase in the bands due to the formation of amorphous cellulose, and the shift to 894 cm−1 (as shown 
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in Fig. S7e) is reported for the formation of cellulose II.4 The cellulose II content varies with ball-milling 

time, which shows no significant change between BM-16-REC and BM-24-REC.

Fig. S7. ATR-IR spectra of (a) MCC-0-WE, (b) recrystallised BM-treated MCCs: BM-0.5-REC (red) and BM-24-REC 

(blue), and (c) as-prepared BM-treated MCCs: BM-0.5 (red) and BM-24 (blue); (d) MCC-0 (grey) with grey spectra 

showing the change in 897 cm−1 band with milling time (BM-0.5 to BM-24), and (e) MCC-0-WE (black) with grey 

spectra showing the change in 897 cm−1 band with BM time after exposure to water (BM-0.5-REC to BM-24-REC).  

Fig. S8. HPLC-RI analysis of the filtrates from MCC washing: MCC-0 and BM-treated MCCs.  

Experiment to check mass-balance 

Additional experiments were performed to assess the mass-balance of the systems under investigation, that is, 

photoreforming of both pristine cellulose (MCC-0) and 24 h ball-milled MCC (BM-24) over 0.16 wt.% 

Pt/TiO2 catalyst. The mass of the catalyst and cellulose (i.e., MCC-0 and BM-24) were weighed before the 

reaction. After the photoreforming reaction, the mixture of cellulose and catalyst in the solution was 
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centrifuged (at 4400 rpm for 10 min) and filtered. The residue (mixture of cellulose and catalyst) was then 

dried at 100 °C for 24 h, and the dried residue was weighed as the total mass after reaction shown in Table 

S2.

Table S2 Mass loss of the photoreforming reaction of MCC-0 and ball-milled cellulose

Reaction feed Total mass after 

reaction (g)

Mass loss 

(g)

Catalyst mass (g) Cellulose Mass (g)

0.076 MCC-0 0.100 0.145 0.031

0.077 BM-24 0.101 0.144 0.034

Table S3 Comparison of H2 production from cellulose photoreforming

Photocatalyst H2 production rate

 (µmol h-1 gPt
-1)

Light source Referencea

0.5 wt.% Pt/TiO2 120000 Xe lamp 7 Kondarides et al.

0.2 wt.% Pt/TiO2 82900 UV-A lamp 8 Lan et al.

0.5 wt.% Pt/TiO2 45000 UV-A lamp 9 Speltini et al.

1.0 wt.% Pt/TiO2 23200 Xe lamp 10 Caravaca et al.

0.5 wt.% Pt/TiO2 8000 UV LED array 11 Chang et al.

5.0 wt.% Pt/TiO2 300 Xe lamp 12 Kawai et al.

a references are listed below in the ESI.

Table S4 Normalised rH2 (based on Pt loading) of the ball-milled MCCs 

Cellulose sample rH2 (µmol h−1) Normalised rH2 (µmol h−1 gPt
−1)

MCC-0 8.0 66600

BM-0.5 10.1 84100

BM-2 10.9 90800

BM-6 11.6 96600

BM-16 12.7 105900

BM-24 13.3 110800
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