Supporting Information

Selective neutral pH inhibitor of cathepsin B designed based on cleavage preferences at cytosolic and lysosomal pH conditions

Michael C. Yoon^{1,2}, Angelo Solania³, Zhenze Jiang¹, Mitchell P. Christy⁴, Sonia Podvin¹, Charles Mosier¹, Christopher B. Lietz¹, Gen Ito¹, William H. Gerwick⁴, Dennis W, Wolan³, Gregory Hook⁵, Anthony J. O'Donoghue^{1*}, and Vivian Hook^{1,6*}

¹Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92037, USA; ²Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92037, USA; ³Departments of Molecular Medicine and Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; ⁴Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92037, USA; ⁵American Life Sciences Pharmaceuticals, Inc., La Jolla, CA 92037, USA; ⁶Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA 92037, USA

* Corresponding Authors:

Dr. Vivian Hook, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Dr. MC0657, La Jolla, CA 92093-0657, email vhook@ucsd.edu, and

Dr. Anthony J. O'Donoghue, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Dr. MC0655, La Jolla, CA 92093-0655, email ajodonoghue@ucsd.edu

Supplemental Information

Table and Figures

Supplemental Table:

Table S1. Cathepsin B cleavages at positions 1-13 of peptide library substrates at 15 min. and 60 min. in MSP-MS analyses

Supplemental Figures:

Figure S1. Volcano plot of cathepsin B peptide cleavage products by MSP-MS at pH 7.2 and 4.6. Cathepsin B cleavage products generated were quantitated by $log_2(Cat.B/inactivated enzyme)$ as a measure of fold-change of peptide intensities above the quenched inactive enzyme, and assessed for p values (p < 0.05).

(a) MSP-MS peptide products at pH 7.2.

(b) MSP-MS peptide products at pH 4.6.

Figure S2. MSP-MS assays: 0% False Positive Rate (FPR) for quenched cathepsin B control.

Figure S3. pH curves for the substrates Z-Arg-Lys-AMC, Z-Glu-Lys-AMC, and Z-Phe-Arg-AMC with absolute relative fluorescence (RFU) values for cathepsin B activity.

Figure S4. Selectivity of Z-Arg-Lys-AMC and Z-Glu-Lys-AMC substrates for cathepsin B compared to cathepsins L and V, at pH 7.2 and pH 4.6, with comparison to Z-Phe-Arg-AMC.

(a) Z-Arg-Lys-AMC substrate for cathepsin B compared to cathepsins L and V.

(b) Z-Glu-Lys-AMC substrate for cathepsin B compared to cathepsins L and V.

(c) Z-Phe-Arg-AMC substrate for cathepsin B compared to cathepsins L and V.

Figure S5. Chemical synthesis of Z-Arg-Lys-AOMK and Z-Glu-Lys-AOMK inhibitors.

The chemical synthetic steps for Z-Arg-Lys-AOMK and Z-Glu-Lys-AOMK inhibitors are illustrated. The AOMK warhead (blue), with the Lys residue (red), Arg or Glu at the P1 position (black), and the blocking group (purple) are shown. The chemical synthetic steps are described in the methods.

Figure S6. K_I determination of the cathepsin B inhibitors Z-Arg-Lys-AOMK and Z-Glu-Lys-AOMK.

(a) Z-Arg-Lys-AOMK K_I determination at pH 7.2 and pH 4.6.

(b) Z-Glu-Lys-AOMK K_I determination at pH 7.2 and pH 4.6.

Figure S7. Irreversible mechanism of Z-Arg-Lys-AOMK and Z-Glu-Lys-AOMK inhibition.

(a) Z-Arg-Lys-AOMK inhibition.

(b) Z-Glu-Lys-AOMK inhibition

Inhibitors were evaluated for irreversible or reversible inhibition of cathepsin B by dilution experiments. Cathepsin B was pre-incubated with inhibitor at 10 times the IC₅₀ concentration, followed by dilution to 1/10 the IC₅₀ concentration, addition of substrate (Z-F-R-AMC), and monitoring activity in time-course assays. Inhibition of cathepsin B following dilution indicates the irreversible inhibitory mechanism of Z-Arg-Lys-AOMK and Z-Glu-Lys-AOMK.

Figure S8. Model of Z-Arg-Lys-AOMK inhibitor binding interactions to cathepsin B at pH 4.6.

(a) Model of the Z-Arg-Lys-AOMK inhibitor docking to cathepsin B at pH 4.6.

(b) Two-dimensional illustration of Z-Arg-Lys-AOMK and cathepsin B binding interactions at pH 4.6, showing lack of Glu245 interactions with the P2 Arg residue of the Z-Arg-Lys-AOMK inhibitor.

(a) pH 7.2 inhibitor docking. Two-dimensional illustration of Z-Glu-Lys-AMOK interactions with cathepsin B at pH 7.2.

(b) pH 4.6 inhibitor docking. Two-dimensional illustration of Z-Glu-Lys-AMOK interactions with cathepsin B at pH 4.6.

Figure S10. Z-Arg-Lys-AOMK inhibition of cathepsin B at pH 6.8 and IC_{50} value.

Supplemental Methods Information:

Methods S1. LC-MS/MS reports for cathepsin B at pH 7.2 and pH 4.6.

(a) MSP-MS analyses of Cathepsin B at pH 7.2 and pH 4.6.

(b) MSP-MS analyses of Cathepsin B with Z-Arg-Lys-AOMK and Z-Glu-Lys-AOMK inhibitors at pH 7.2 & pH 4.6.

Methods S2. PEAKs reports for MS/MS data analyses.

(a) MSP-MS analyses of Cathepsin B at pH 7.2 and pH 4.6.

(b) MSP-MS analyses of Cathepsin B with Z-Arg-Lys-AOMK and Z-Glu-Lys-AOMK inhibitors at pH 7.2 & pH 4.6.

Methods S3. Workbook of MSP-MS data

Table S1.

Cathepsin B cleavages at peptide bonds #1-13 of peptide library substrates at 15 min. and 60 min. in MSP-MS analyses

Cleavage at peptide bond number	pH 7.2 # cleavages		pH 4.6 # cleavages	
	15 min.	60 min.	15 min.	60 min.
1	0	0	0	0
2	0	0	0	0
3	0	0	0	0
4	0	0	0	0
5	0	0	0	0
6	0	0	0	0
7	1	1	0	1
8	0	2	1	2
9	1	2	1	2
10	5	11	11	30
11	1	2	3	8
12	30	44	67	95
13	2	3	1	4

Cathepsin B was subjected to MSP-MS (multiplex substrate profiling mass spectrometry) analysis at neutral pH 7.2 and acidic pH 4.6. The number of cleavages at each of the peptide bonds at positions 1-13 are illustrated for 15 minutes and 60 incubation of cathepsin B with the 228 14-mer peptide library in MSP-MS analyses. MSP-MS data by nano-LC-MS/MS was analyzed as described in the methods.

Figure S1. Volcano plot of cathepsin B peptide cleavage products by MSP-MS at pH 7.2 and 4.6.

Cathepsin B cleavage products generated were quantitated by $log_2(Cat.B/inactivated enzyme)$ as a measure of fold-change of peptide intensities above the quenched inactive enzyme, and assessed for p values (p < 0.05).

(a) MSP-MS peptide products at pH 7.2.

(b) MSP-MS peptide products at pH 4.6.

Figure S2. MSP-MS assays: 0% False Positive Rate (FPR) for quenched cathepsin B control.

Analysis of the threshold for 0% false positive rate (FRP) was conducted by comparing quenched cathepsin B (inactivated by quenching in 8 M urea for 1 hr) incubated with the peptide library (used for MSP-MS) in two groups at pH 7.2 and pH 4.6, each group consisting of 4 replicates and subjected to LC-MS/MS analyses. Intensity values of peptides in these two groups was compared and plotted log₁₀ of p values vs. log₂ fold change (comparison of the two groups). The criteria for 0% FPR was met with a threshold of 8-fold ratios of peptides in the two groups. Thus, 8-fold was in MSP-MS activity assays with cathepsin B for 0% FPR.

MSP-MS Peptide Fold-Change Comparison for Quenched Cathepsin B Samples

Figure S3. pH curves for the substrates Z-Arg-Lys-AMC, Z-Glu-Lys-AMC, and Z-Phe-Arg-AMC with absolute relative fluorescence (RFU) values for cathepsin B activity.

Figure S4. Selectivity of Z-Arg-Lys-AMC and Z-Glu-Lys-AMC substrates for cathepsin B compared to cathepsins L and V, at pH 7.2 and pH 4.6, with comparison to Z-Phe-Arg-AMC.

(a) Z-Arg-Lys-AMC substrate for cathepsin B compared to cathepsins L and V.

(b) Z-Glu-Lys-AMC substrate for cathepsin B compared to cathepsins L and V.

(c) Z-Phe-Arg-AMC substrate for cathepsin B compared to cathepsins L and V.

Figure S5. Chemical synthesis of Z-Arg-Lys-AOMK and Z-Glu-Lys-AOMK inhibitors.

The chemical synthetic steps for Z-Arg-Lys-AOMK and Z-Glu-Lys-AOMK inhibitors are illustrated. The AOMK warhead (blue), with the Lys residue (red), Arg or Glu at the P1 position (black), and the blocking group (purple) are shown. The chemical synthetic steps are described in the methods.

Figure S6. K_I determination of the cathepsin B inhibitors Z-Arg-Lys-AOMK and Z-Glu-Lys-AOMK.

(a) Z-Arg-Lys-AOMK K_I determination at pH 7.2 and pH 4.6. (b) Z-Glu-Lys-AOMK K_I determination at pH 7.2 and pH 4.6.

Figure S7. Irreversible mechanism of Z-Arg-Lys-AOMK and Z-Glu-Lys-AOMK inhibition.

(a) Z-Arg-Lys-AOMK inhibition.

(b) Z-Glu-Lys-AOMK inhibition

Inhibitors were evaluated for irreversible or reversible inhibition of cathepsin B by dilution experiments. Cathepsin B was pre-incubated with inhibitor at 10 times the IC_{50} concentration, followed by dilution to 1/10 the IC_{50} concentration, addition of substrate (Z-F-R-AMC), and monitoring activity in time-course assays. Inhibition of cathepsin B following dilution indicates the irreversible inhibitory mechanism of Z-Arg-Lys-AOMK and Z-Glu-Lys-AOMK.

Figure S8. Model of Z-Arg-Lys-AOMK inhibitor binding interactions to cathepsin B at pH 4.6.

(a) Model of the Z-Arg-Lys-AOMK inhibitor docking to cathepsin B at pH 4.6.

(b) Two-dimensional illustration of Z-Arg-Lys-AOMK and cathepsin B binding interactions at pH 4.6, showing lack of Glu245 interactions with the P2 Arg residue of the Z-Arg-Lys-AOMK inhibitor.

Figure S9. Model of Z-Glu-Lys-AOMK inhibitor binding interactions to cathepsin B at pH 4.6 and pH 7.2.

(a) pH 7.2 inhibitor docking. Two-dimensional illustration of Z-Glu-Lys-AMOK interactions with cathepsin B at pH 7.2.

(b) pH 4.6 inhibitor docking. Two-dimensional illustration of Z-Glu-Lys-AMOK interactions with cathepsin B at pH 4.6.

* No direct interaction of Glu245 with P2 Glu

Figure S10. Z-Arg-Lys-AOMK inhibition of cathepsin B at pH 6.8 and IC₅₀ value.

Supplemental Methods Information:

Methods S1. LC-MS/MS reports for cathepsin B at pH 7.2 and pH 4.6.

(a) MSP-MS analyses of Cathepsin B at pH 7.2 and pH 4.6.

(b) MSP-MS analyses of Cathepsin B with Z-Arg-Lys-AOMK and Z-Glu-Lys-AOMK inhibitors at pH 7.2 & pH 4.6.

Methods S2. PEAKs reports for MS/MS data analyses.

(a) MSP-MS analyses of Cathepsin B at pH 7.2 and pH 4.6.

(b) MSP-MS analyses of Cathepsin B with Z-Arg-Lys-AOMK and Z-Glu-Lys-AOMK inhibitors at pH 7.2 & pH 4.6.

Methods S3. Workbook of MSP-MS data

Supplemental Information: Methods

Methods S1. LC-MS/MS reports for cathepsin B at pH 7.2 and pH 4.6.

(a) MSP-MS analyses of Cathepsin B at pH 7.2 and pH 4.6.

(b) MSP-MS analyses of Cathepsin B with Z-Arg-Lys-AOMK and Z-Glu-Lys-AOMK inhibitors at pH 7.2 & pH 4.6.

Methods S2. PEAKs reports for MS/MS data analyses.

(a) MSP-MS analyses of Cathepsin B at pH 7.2 and pH 4.6.

(b) MSP-MS analyses of Cathepsin B with Z-Arg-Lys-AOMK and Z-Glu-Lys-AOMK inhibitors at pH 7.2 & pH 4.6.

Methods S3. Workbook of MSP-MS data

Supplement Methods S1(a). LC-MS-MS Report, Cathepsin B MSP-MS at pH 4.6 and 7.2.

Samples were resuspended in 0.1% FA to a total peptide concentration of 114 μM Each sample were injected once, 1 ul total volume per injection

The C18 column consisted of 1.7 μ m bead size, 75 μ m x 20 cm, heated to 65°C.

Solvent A – water, 0.1% formic acid Solvent B – acetonitrile, 0.1% formic acid

Nano-LC gradient:

A	В	С	D
Time	Flow	% solvent	% solvent
(min)	(ul/min)	А	В
0	0.3	99	1
5	0.3	99	1
5.5	0.3	95	5
55	0.3	70	30
62	0.3	25	75
62.5	0.3	5	95
70	0.3	5	95
70.5	0.3	99	1

MS Sample List

MY_20180116_46_0000_1.raw	MY_20180116_46_0060_1.raw
MY_20180116_46_0000_2.raw	MY_20180116_46_0060_2.raw
MY_20180116_46_0000_3.raw	MY_20180116_46_0060_3.raw
MY_20180116_46_0000_4.raw	MY_20180116_46_0060_4.raw
MY_20180116_72_0000_1.raw	MY_20180116_72_0015_1.raw
MY_20180116_72_0000_2.raw	MY_20180116_72_0015_2.raw
MY_20180116_72_0000_3.raw	MY_20180116_72_0015_3.raw
MY_20180116_72_0000_4.raw	MY_20180116_72_0015_4.raw
MY_20180116_46_0015_1_Reinject.raw	MY_20180116_72_0060_1.raw
MY_20180116_46_0015_2.raw	MY_20180116_72_0060_2.raw
MY_20180116_46_0015_3.raw	MY_20180116_72_0060_3.raw
MY_20180116_46_0015_4.raw	MY_20180116_72_0060_4.raw

Q-Exactive MS Report: Thermo Scientific SII for Xcalibur Method – Next Pages

```
Thermo Scientific SII for Xcalibur Method
---- Overview -----
Name: New Instrument Method
Comment:
Run time: 95.000 [min]
Instrument: Hook nano on 2hy18d2
Description:
---- Script --
initial
             Instrument Setup
             PumpModule.LoadingPump.%A.Equate: "%A"
             PumpModule.LoadingPump.%B.Equate: "%B"
             PumpModule.LoadingPump.%C.Equate: "%C"
             PumpModule.LoadingPump.Pressure.LowerLimit: 0 [bar]
             PumpModule.LoadingPump.Pressure.UpperLimit: 600 [bar]
             PumpModule.LoadingPump.MaximumFlowRampUp: 101 [µl/min<sup>2</sup>]
             PumpModule.LoadingPump.MaximumFlowRampDown: 10 [µl/min<sup>2</sup>]
             PumpModule.NC Pump.%A.Equate: "%A"
             PumpModule.NC_Pump.%B.Equate: "%B"
PumpModule.NC_Pump.Pressure.LowerLimit: 0 [psi]
             PumpModule.NC_Pump.Pressure.UpperLimit: 9800 [psi]
             PumpModule.NC_Pump.MaximumFlowRampUp: 0.300 [µ1/min<sup>2</sup>]
PumpModule.NC_Pump.MaximumFlowRampDown: 0.300 [µ1/min<sup>2</sup>]
             ColumnOven.TempCtrl: Off
             Sampler.LowDispersionMode: Off
             Sampler.WashSpeed: 4.000 [µl/s]
             Sampler.WashVolume: 50.000 [µ1]
             Sampler.PunctureDepth: 7.000 [mm]
             Sampler.SampleHeight: 3.000 [mm]
             Sampler.WasteSpeed: 4.000 [µl/s]
             Sampler.DispenseDelay: 2.000 [s]
             Sampler.DispSpeed: 2.000 [µl/s]
             Sampler.DrawSpeed: 0.500 [µ1/s]
             Sampler.DrawDelay: 5.000 [s]
             Sampler.RinseBetweenReinjections: No
             Sampler.InjectMode: UserProg
             Sampler.LoopWashFactor: 2.000
             Sampler.PumpDevice: "NC Pump"
             Sampler.ReagentAVial: R1
             Sampler.ReagentBVial: R2
             Sampler.ReagentCVial: R3
             Sampler.ReagentDVial: R4
             Sampler.ReagentEVial: RA1
             Sampler.ReagentFVial: RA1
             Sampler.ReagentGVial: RA1
             Sampler.ReagentHVial: RA1
             Sampler.TempCtrl: On
             Sampler.Temperature.Nominal: 7.0 [°C]
             Sampler.ReadyTempDelta: None
             Sampler.Temperature.LowerLimit: 4.0 [°C]
```

Tuesday, September 29, 2020 13:20:26

Thermo Scientific SII for Xcalibur Method Sampler.Temperature.UpperLimit: 45.0 [°C] Sampler.UdpSyringeValve Waste Sampler.UdpMixNeedleWash 100 Sampler.UdpSyringeValve Needle Sampler.UdpDraw ReagentAVial, (2*Sampler.NeedleVolume)+Sampler.LoopVolume, GlobalSpeed, 4 [mm] Sampler.UdpMixWait 4 [s] Sampler.UdpInjectValve Load Sampler.UdpDraw SampleVial, Sampler.Volume, 0.2 [µl/s], 3.000 [mm] Sampler.UdpMixWait 4 [s] Sampler.UdpDraw ReagentAVial, (Sampler.LoopVolume-Sampler.Volume) *0.5+Sampler.NeedleVolume, GlobalSpeed, 2 [mm] Sampler.UdpMixWait 4 [s] Sampler.UdpInjectValve Inject Sampler.UdpMixWait Sampler.LoopVolume/PumpModule.NC Pump.Flow.Nominal*1.1*60 Sampler.UdpInjectValve Load Sampler.UdpInjectMarker Sampler.UdpSyringeValve Waste Sampler.UdpMixNeedleWash 100.000 [µ1] [nim] 000.0 Inject Preparation Wait PumpModule.LoadingPump Ready And PumpModule.NC Pump.Ready And ColumnOven.Ready 0.000 [min] Inject Sampler.Inject 0.000 [min] Start Run PumpModule.NC_Pump.NC_Pump_Pressure.AcqOn 0.000 [min] Run PumpModule.LoadingPump.Flow.Nominal: 0.000 [µl/min] PumpModule.LoadingPump.%B.Value: 0.0 [%] PumpModule.LoadingPump.%C.Value: 0.0 [%] PumpModule.LoadingPump.Curve: 5 PumpModule.NC Pump.Flow.Nominal: 0.300 [µ1/min] PumpModule.NC_Pump.%B.Value: 1.0 [%] PumpModule.NC_Pump.Curve: 5 0.100 [min] PumpModule.NC_Pump.Flow.Nominal: 0.300 [µ1/min] PumpModule.NC Pump. %B.Value: 5.0 [%] PumpModule.NC_Pump.Curve: 5 20.000 [min] PumpModule.LoadingPump.Flow.Nominal: 0.000 [µl/min] PumpModule.LoadingPump.%B.Value: 0.0 [%] PumpModule.LoadingPump.%C.Value: 0.0 [%]

Tuesday, September 29, 2020 13:20:26

Page 2 of 5

Thermo	Scientific SII for Xcalibur Method
60.000	PumpModule.LoadingPump.Curve: 5
	PumpModule.NC_Pump.Flow.Nominal: 0.300 [µl/min] PumpModule.NC_Pump.%B.Value: 30.0 [%] PumpModule.NC_Pump.Curve: 5
65.000	<pre>[min] PumpModule.NC_Pump.Flow.Nominal: 0.300 [µl/min] PumpModule.NC_Pump.%B.Value: 85.0 [%] PumpModule.NC_Pump.Curve: 5</pre>
75.000	<pre>[min] PumpModule.NC_Pump.Flow.Nominal: 0.300 [µl/min] PumpModule.NC_Pump.%B.Value: 85.0 [%] PumpModule.NC_Pump.Curve: 5</pre>
75.100	[min]
	PumpModule.NC_Pump.*B.Value: 90.0 [%] PumpModule.NC_Pump.Curve: 5
85.000	<pre>[min] PumpModule.NC_Pump.Flow.Nominal: 0.400 [µl/min] PumpModule.NC_Pump.%B.Value: 90.0 [%] PumpModule.NC_Pump.Curve: 5</pre>
85.100	[min] PumpModule.NC Pump.Flow.Nominal: 0.300 [u]/min]
	PumpModule.NC_Pump.%B.Value: 1.0 [%] PumpModule.NC_Pump.Curve: 5
95.000	[min] Stop Run PumpModule.NC_Pump.NC_Pump_Pressure.AcqOff

Tuesday, September 29, 2020 13:20:27

Method of Q Exactive		
Overall method settings		
Global Settings	o f f	
Lock mass injection		
Chrom. peak width (FWHM)	15	S
Time		
Method duration	95.00	min
Customized Tolerances (+/-)	723	
Inclusion	_	
Exclusion	-	
Neutral Loss	-	
Mass Tags	-	
Dynamic Exclusion	10.0	ppm
Experiment		
Full MS / dd-MS ² (TopN)		
Runtime	0 to 95	min
Polarity	Positive	III II
In-source CID	0.0	eV
Default charge state	2	
Inclusion	-	
Exclusion		
Microscans	1	
Resolution	70,000	
AGC target	3e6	
Maximum IT	100	ms
Number of scan ranges	250 to 1500	m/7
Spectrum data type	Profile	111/ 2
dd-MS ² / dd-SIM		
Microscans	1	
Resolution	17,500	
AGC target	1e5	PD 01
	12	ms
MSX count	1	
TopN	12	
Isolation window	1.5	m/z
Isolation offset	0.0	m/z
Scan range Fixed first mass	200 to 2000	m/z
LIVED ITTOC MODD	100.0	1117 2

Tuesday, September 29, 2020 13:20:27

Page 4 of 5

(N)CE / stepped (N)CE Spectrum data type dd Settings Minimum AGC target Intensity threshold Apex trigger Charge exclusion Peptide match Exclude isotopes Dynamic exclusion If idle ..

nce: 28 Centroid

> 3.00e2 6.0e3

unassigned, 1 Preferred on 20.0 s do not pick others

Setup

Tunefiles

General Switch Count 0 Base Tunefile C:\Xcalibur\methods\CL nanoTune 20180409.mstune

Contact Closure

General False Start in Closed True 0 Switch Count

Syringe

General Start in OFF True Stop at end of run False Switch Count 0 Pump setup

Pump setupSyringe typeHamiltonFlow rate3.000 µL/minInner diameter2.303 mmVolume250 µL Volume 250 µL

Divert Valve A

General Used False Start in 1-2 True Switch Count 0

Divert Valve B

General Used False Start in 1-2 True Switch Count 0

Tuesday, September 29, 2020 13:20:27

Page 5 of 5

```
Thermo Scientific SII for Xcalibur Method
---- Overview -----
Name: New Instrument Method
Comment:
Run time: 95.000 [min]
Instrument: Hook nano on 2hy18d2
Description:
---- Script --
initial
             Instrument Setup
             PumpModule.LoadingPump.%A.Equate: "%A"
             PumpModule.LoadingPump.%B.Equate: "%B"
             PumpModule.LoadingPump.%C.Equate: "%C"
             PumpModule.LoadingPump.Pressure.LowerLimit: 0 [bar]
             PumpModule.LoadingPump.Pressure.UpperLimit: 600 [bar]
             PumpModule.LoadingPump.MaximumFlowRampUp: 101 [µl/min<sup>2</sup>]
             PumpModule.LoadingPump.MaximumFlowRampDown: 10 [µl/min<sup>2</sup>]
             PumpModule.NC Pump.%A.Equate: "%A"
             PumpModule.NC_Pump.%B.Equate: "%B"
PumpModule.NC_Pump.Pressure.LowerLimit: 0 [psi]
             PumpModule.NC_Pump.Pressure.UpperLimit: 9800 [psi]
             PumpModule.NC_Pump.MaximumFlowRampUp: 0.300 [µ1/min<sup>2</sup>]
PumpModule.NC_Pump.MaximumFlowRampDown: 0.300 [µ1/min<sup>2</sup>]
             ColumnOven.TempCtrl: Off
             Sampler.LowDispersionMode: Off
             Sampler.WashSpeed: 4.000 [µl/s]
             Sampler.WashVolume: 50.000 [µ1]
             Sampler.PunctureDepth: 7.000 [mm]
             Sampler.SampleHeight: 3.000 [mm]
             Sampler.WasteSpeed: 4.000 [µl/s]
             Sampler.DispenseDelay: 2.000 [s]
             Sampler.DispSpeed: 2.000 [µl/s]
             Sampler.DrawSpeed: 0.500 [µ1/s]
             Sampler.DrawDelay: 5.000 [s]
             Sampler.RinseBetweenReinjections: No
             Sampler.InjectMode: UserProg
             Sampler.LoopWashFactor: 2.000
             Sampler.PumpDevice: "NC Pump"
             Sampler.ReagentAVial: R1
             Sampler.ReagentBVial: R2
             Sampler.ReagentCVial: R3
             Sampler.ReagentDVial: R4
             Sampler.ReagentEVial: RA1
             Sampler.ReagentFVial: RA1
             Sampler.ReagentGVial: RA1
             Sampler.ReagentHVial: RA1
             Sampler.TempCtrl: On
             Sampler.Temperature.Nominal: 7.0 [°C]
             Sampler.ReadyTempDelta: None
             Sampler.Temperature.LowerLimit: 4.0 [°C]
```

Tuesday, September 29, 2020 13:20:26

S18

Thermo Scientific SII for Xcalibur Method Sampler.Temperature.UpperLimit: 45.0 [°C] Sampler.UdpSyringeValve Waste Sampler.UdpMixNeedleWash 100 Sampler.UdpSyringeValve Needle Sampler.UdpDraw ReagentAVial, (2*Sampler.NeedleVolume)+Sampler.LoopVolume, GlobalSpeed, 4 [mm] Sampler.UdpMixWait 4 [s] Sampler.UdpInjectValve Load Sampler.UdpDraw SampleVial, Sampler.Volume, 0.2 [µl/s], 3.000 [mm] Sampler.UdpMixWait 4 [s] Sampler.UdpDraw ReagentAVial, (Sampler.LoopVolume-Sampler.Volume) *0.5+Sampler.NeedleVolume, GlobalSpeed, 2 [mm] Sampler.UdpMixWait 4 [s] Sampler.UdpInjectValve Inject Sampler.UdpMixWait Sampler.LoopVolume/PumpModule.NC Pump.Flow.Nominal*1.1*60 Sampler.UdpInjectValve Load Sampler.UdpInjectMarker Sampler.UdpSyringeValve Waste Sampler.UdpMixNeedleWash 100.000 [µ1] [nim] 000.0 Inject Preparation Wait PumpModule.LoadingPump Ready And PumpModule.NC Pump.Ready And ColumnOven.Ready 0.000 [min] Inject Sampler.Inject 0.000 [min] Start Run PumpModule.NC_Pump.NC_Pump_Pressure.AcqOn 0.000 [min] Run PumpModule.LoadingPump.Flow.Nominal: 0.000 [µl/min] PumpModule.LoadingPump.%B.Value: 0.0 [%] PumpModule.LoadingPump.%C.Value: 0.0 [%] PumpModule.LoadingPump.Curve: 5 PumpModule.NC Pump.Flow.Nominal: 0.300 [µ1/min] PumpModule.NC_Pump.%B.Value: 1.0 [%] PumpModule.NC_Pump.Curve: 5 0.100 [min] PumpModule.NC_Pump.Flow.Nominal: 0.300 [µ1/min] PumpModule.NC Pump. %B.Value: 5.0 [%] PumpModule.NC_Pump.Curve: 5 20.000 [min] PumpModule.LoadingPump.Flow.Nominal: 0.000 [µl/min] PumpModule.LoadingPump.%B.Value: 0.0 [%] PumpModule.LoadingPump.%C.Value: 0.0 [%]

Tuesday, September 29, 2020 13:20:26

Page 2 of 5

Thermo	Scientific SII for Xcalibur Method
60.000	PumpModule.LoadingPump.Curve: 5 [min]
	PumpModule.NC_Pump.Flow.Nominal: 0.300 [µl/min] PumpModule.NC_Pump.%B.Value: 30.0 [%] PumpModule.NC_Pump.Curve: 5
65.000	<pre>[min] PumpModule.NC_Pump.Flow.Nominal: 0.300 [µl/min] PumpModule.NC_Pump.%B.Value: 85.0 [%] PumpModule.NC_Pump.Curve: 5</pre>
75.000	<pre>[min] PumpModule.NC_Pump.Flow.Nominal: 0.300 [µl/min] PumpModule.NC_Pump.%B.Value: 85.0 [%] PumpModule.NC_Pump.Curve: 5</pre>
75.100	<pre>[min] PumpModule.NC_Pump.Flow.Nominal: 0.400 [µl/min] PumpModule.NC_Pump.%B.Value: 90.0 [%] PumpModule.NC_Pump.Curve: 5</pre>
85.000	<pre>[min] PumpModule.NC_Pump.Flow.Nominal: 0.400 [µl/min] PumpModule.NC_Pump.%B.Value: 90.0 [%] PumpModule.NC_Pump.Curve: 5</pre>
85.100	<pre>[min] PumpModule.NC_Pump.Flow.Nominal: 0.300 [µl/min] PumpModule.NC_Pump.%B.Value: 1.0 [%] PumpModule.NC_Pump.Curve: 5</pre>
95.000	[min] Stop Run PumpModule.NC_Pump.NC_Pump_Pressure.AcqOff

Tuesday, September 29, 2020 13:20:27

Method of Q Exactive		
Overall method settings		
Global Settings	0.F.F	
Lock mass injection	-	
Chrom. peak width (FWHM)	15	S
Time		
Method duration	95.00	min
Customized Tolerances (+/-)		
Lock Masses	_	
Exclusion	_	
Neutral Loss	-	
Mass Tags		
Dynamic Exclusion	10.0	ppm
Experiment		
Full MS / dd-MS ² (TopN)		
General	0.1.05	
Runtime	U to 95	min
In-source CID	POSICIVE 0.0	οV
Default charge state	2	0.
Inclusion	_	
Exclusion		
Tags	-	
Full MS	1	
Resolution		
AGC target	396	
Maximum IT	100	ms
Number of scan ranges	1	
Scan range	250 to 1500	m/z
Spectrum data type	Profile	
dd-MS ² / dd-SIM	1	
Resolution	17.500	
AGC target	1e5	
Maximum IT	50	ms
Loop count	12	
MSX count	1	
TopN	12	/
Isolation window	1.5	m/z
Scan range	200 to 2000	m/z
Fixed first mass	150.0	m/z

Tuesday, September 29, 2020 13:20:27

(N)CE / stepped (N)CE Spectrum data type dd Settings Minimum AGC target Intensity threshold Apex trigger Charge exclusion Peptide match Exclude isotopes Dynamic exclusion If idle ..

nce: 28 Centroid

> 3.00e2 6.0e3

unassigned, 1 Preferred on 20.0 s do not pick others

Setup

Tunefiles

General Switch Count 0 Base Tunefile C:\Xcalibur\methods\CL nanoTune 20180409.mstune

Contact Closure

General False Start in Closed True 0 Switch Count

Syringe

General Start in OFF True Stop at end of run False Switch Count 0 Pump setup

Pump setupSyringe typeHamiltonFlow rate3.000 µL/minInner diameter2.303 mmVolume250 µL Volume 250 µL

Divert Valve A

General Used False Start in 1-2 True Switch Count 0

Divert Valve B

General Used False Start in 1-2 True Switch Count 0

Tuesday, September 29, 2020 13:20:27

Page 5 of 5

Supplement Methods S1(b). LC-MS-MS Report, Cathepsin B MSP-MS with Peptidic AOMK Inhibitors, pH 4.6 and 7.2.

Samples were resuspended in 0.1% TFA to a total peptide concentration of 28.5 μ M Each sample were injected once, 4 ul total volume per injection

The C18 column consisted of 1.7 μ m bead size, 75 μ m x 20 cm, heated to 65°C.

Solvent A – water, 0.1% formic acid Solvent B – acetonitrile, 0.1% formic acid

Nano-I C gradient

AŬ	В	С	D
Time	Flow	% solvent	% solvent
(min)	(ul/min)	А	В
0	0.3	99	1
0.1	0.3	95	5
60	0.3	70	30
65	0.3	15	85
75	0.3	15	85
75.1	0.4	10	90
85	0.4	10	90
85.1	0.3	99	1

MS Sample List

7 RK d MY pH72 60.raw 4 RK d MY pH46 60.raw 7 RK c MY pH72 60.raw 4 RK c MY pH46 60.raw 7 RK a MY pH72 60.raw 4 RK a MY pH46 60.raw 7 Q d MY pH72 60.raw 4 Q d MY pH46 60.raw 7 Q d MY pH72 60.raw 4 Q d MY pH46 60.raw 7 Q c MY pH72 60.raw 4 Q c MY pH46 60.raw 7 Q b MY pH72 60.raw 4 Q b MY pH46 60.raw 7 Q b MY pH72 60.raw 4 Q a MY pH46 60.raw 7 Q a MY pH72 60.raw 4 Q a MY pH46 60.raw 7 Q a MY pH72 60.raw 4 Q a MY pH46 60.raw 7 EK d MY pH72 60.raw 4 EK d MY pH46 60.raw 7 EK d MY pH72 60.raw 4 EK d MY pH46 60.raw 7 EK d MY pH72 60.raw 4 EK d MY pH46 60.raw 7 EK d MY pH72 60.raw 4 EK a MY pH46 60.raw 7 EK a MY pH72 60.raw 4 EK a MY pH46 60.raw 7 DMSO d MY pH72 60.raw 4 DMSO d MY pH46 60.raw 7 DMSO d MY pH72 60.raw 4 </th <th></th> <th></th>		
7 RK c MY pH72 60.raw 4 RK c MY pH46 60.raw 7 RK b MY pH72 60.raw 4 RK a MY pH46 60.raw 7 Q d MY pH72 60.raw 4 Q d MY pH46 60.raw 7 Q d MY pH72 60.raw 4 Q d MY pH46 60.raw 7 Q d MY pH72 60.raw 4 Q c MY pH46 60.raw 7 Q c MY pH72 60.raw 4 Q c MY pH46 60.raw 7 Q b MY pH72 60.raw 4 Q a MY pH46 60.raw 7 Q a MY pH72 60.raw 4 Q a MY pH46 60.raw 7 Q a MY pH72 60.raw 4 Q a MY pH46 60.raw 7 EK d MY pH72 60.raw 4 EK d MY pH46 60.raw 7 EK d MY pH72 60.raw 4 EK d MY pH46 60.raw 7 EK d MY pH72 60.raw 4 EK a MY pH46 60.raw 7 EK a MY pH72 60.raw 4 EK a MY pH46 60.raw 7 DMSO d MY pH72 60.raw 4 DMSO d MY pH46 60.raw 7 DMSO d MY pH72 60.raw 4 DMSO d MY pH46 60.raw 7 DMSO d MY pH72 60.raw 4 DMSO c MY pH46 60.raw 7 DMSO c MY pH72 60.raw	7_RK_d_MY_pH72_60.raw	4_RK_d_MY_pH46_60.raw
7 RK b MY pH72 60.raw 4 RK a MY pH46 60 Reinject.raw 7 RK a MY pH72 60.raw 4 RK a MY pH46 60.raw 7 Q d MY pH72 60.raw 4 Q d MY pH46 60.raw 7 Q b MY pH72 60.raw 4 Q b MY pH46 60.raw 7 Q b MY pH72 60.raw 4 Q b MY pH46 60.raw 7 Q a MY pH72 60.raw 4 Q a MY pH46 60.raw 7 Q a MY pH72 60.raw 4 Q a MY pH46 60.raw 7 EK d MY pH72 60.raw 4 EK d MY pH46 60.raw 7 EK c MY pH72 60.raw 4 EK d MY pH46 60.raw 7 EK c MY pH72 60.raw 4 EK d MY pH46 60.raw 7 EK c MY pH72 60.raw 4 EK d MY pH46 60.raw 7 EK b MY pH72 60.raw 4 EK a MY pH46 60.raw 7 EK a MY pH72 60.raw 4 EK a MY pH46 60.raw 7 DMSO d MY pH72 60.raw 4 DMSO d MY pH46 60.raw 7 DMSO c MY pH72 60.raw 4 DMSO c MY pH46 60.raw 7 DMSO c MY pH72 60.raw 4 DMSO c MY pH46 60.raw 7 DMSO b MY pH72 60.r	7_RK_c_MY_pH72_60.raw	4_RK_c_MY_pH46_60.raw
7 RK_a_MY_pH72_60.raw 4 RK_a_MY_pH46_60.raw 7_Q_d_MY_pH72_60.raw 4_Q_c_MY_pH46_60.raw 7_Q_b_MY_pH72_60.raw 4_Q_b_MY_pH46_60.raw 7_Q_a_MY_pH72_60.raw 4_Q_a_MY_pH46_60.raw 7_Q_a_MY_pH72_60.raw 4_Q_a_MY_pH46_60.raw 7_EK_d_MY_pH72_60.raw 4_EK_d_MY_pH46_60.raw 7_EK_c_MY_pH72_60.raw 4_EK_c_MY_pH46_60.raw 7_EK_b_MY_pH72_60.raw 4_EK_c_MY_pH46_60.raw 7_EK_b_MY_pH72_60.raw 4_EK_b_MY_pH46_60.raw 7_EK_a_MY_pH72_60.raw 4_EK_a_MY_pH46_60.raw 7_DMSO_d_MY_pH72_60.raw 4_EK_a_MY_pH46_60.raw 7_DMSO_b_MY_pH72_60.raw 4_DMSO_b_MY_pH46_60.raw 7_DMSO_b_MY_pH72_60.raw 4_DMSO_b_MY_pH46_60.raw 7_DMSO_b_MY_pH72_60.raw 4_DMSO_b_MY_pH46_60.raw 7_DMSO_b_MY_pH72_60.raw 4_DMSO_b_MY_pH46_60.raw	7_RK_b_MY_pH72_60.raw	4_RK_b_MY_pH46_60_Reinject.raw
7 Q d MY pH72 60.raw 4 Q d MY pH46 60.raw 7 Q b MY pH72 60.raw 4 Q b MY pH46 60.raw 7 Q a MY pH72 60.raw 4 Q a MY pH46 60.raw 7 Q a MY pH72 60.raw 4 Q a MY pH46 60.raw 7 EK d MY pH72 60.raw 4 EK d MY pH46 60.raw 7 EK d MY pH72 60.raw 4 EK d MY pH46 60.raw 7 EK c MY pH72 60.raw 4 EK c MY pH46 60.raw 7 EK b MY pH72 60.raw 4 EK c MY pH46 60.raw 7 EK a MY pH72 60.raw 4 EK a MY pH46 60.raw 7 EK a MY pH72 60.raw 4 EK a MY pH46 60.raw 7 DMSO d MY pH72 60.raw 4 DMSO d MY pH46 60.raw 7 DMSO c MY pH72 60.raw 4 DMSO c MY pH46 60.raw 7 DMSO c MY pH72 60.raw 4 DMSO c MY pH46 60.raw 7 DMSO c MY pH72 60.raw 4 DMSO c MY pH46 60.raw 7 DMSO b MY pH72 60.raw 4 DMSO c MY pH46 60.raw 7 DMSO a MY pH72 60.raw 4 DMSO a MY pH46 60.raw	7_RK_a_MY_pH72_60.raw	4_RK_a_MY_pH46_60.raw
7 Q c MY pH72 60.raw 4 Q c MY pH46 60.raw 7 Q b MY pH72 60.raw 4 Q b MY pH46 60.raw 7 Q a MY pH72 60.raw 4 Q a MY pH46 60.raw 7 EK d MY pH72 60.raw 4 EK d MY pH46 60.raw 7 EK c MY pH72 60.raw 4 EK c MY pH46 60.raw 7 EK b MY pH72 60.raw 4 EK b MY pH46 60.raw 7 EK b MY pH72 60.raw 4 EK b MY pH46 60.raw 7 EK a MY pH72 60.raw 4 EK b MY pH46 60.raw 7 EK a MY pH72 60.raw 4 EK b MY pH46 60.raw 7 DMSO d MY pH72 60.raw 4 EK a MY pH46 60.raw 7 DMSO c MY pH72 60.raw 4 DMSO d MY pH46 60.raw 7 DMSO b MY pH72 60.raw 4 DMSO c MY pH46 60.raw 7 DMSO b MY pH72 60.raw 4 DMSO c MY pH46 60.raw 7 DMSO b MY pH72 60.raw 4 DMSO b MY pH46 60.raw 7 DMSO b MY pH72 60.raw 4 DMSO b MY pH46 60.raw 7 DMSO b MY pH72 60.raw 4 DMSO b MY pH46 60.raw 7 DMSO b MY pH72 60.raw 4 DMSO b MY pH46 60.raw 7 DMSO a MY pH72 60.raw 4 DMSO b MY pH46 60.raw	7_Q_d_MY_pH72_60.raw	4_Q_d_MY_pH46_60.raw
7 Q b MY pH72 60.raw 4 Q b MY pH46 60.raw 7 Q a MY pH72 60.raw 4 Q a MY pH46 60.raw 7 EK d MY pH72 60.raw 4 EK d MY pH46 60.raw 7 EK c MY pH72 60.raw 4 EK c MY pH46 60.raw 7 EK b MY pH72 60.raw 4 EK c MY pH46 60.raw 7 EK b MY pH72 60.raw 4 EK b MY pH46 60.raw 7 EK a MY pH72 60.raw 4 EK b MY pH46 60.raw 7 EK a MY pH72 60.raw 4 EK a MY pH46 60.raw 7 DMSO d MY pH72 60.raw 4 DMSO d MY pH46 60.raw 7 DMSO c MY pH72 60.raw 4 DMSO c MY pH46 60.raw 7 DMSO b MY pH72 60.raw 4 DMSO c MY pH46 60.raw 7 DMSO b MY pH72 60.raw 4 DMSO c MY pH46 60.raw 7 DMSO a MY pH72 60.raw 4 DMSO b MY pH46 60.raw 7 DMSO a MY pH72 60.raw 4 DMSO b MY pH46 60.raw	7_Q_c_MY_pH72_60.raw	4_Q_c_MY_pH46_60.raw
7_Q_a_MY_pH72_60.raw 4_Q_a_MY_pH46_60.raw 7_EK_d_MY_pH72_60.raw 4_EK_d_MY_pH46_60.raw 7_EK_c_MY_pH72_60.raw 4_EK_c_MY_pH46_60.raw 7_EK_b_MY_pH72_60.raw 4_EK_b_MY_pH46_60.raw 7_EK_a_MY_pH72_60.raw 4_EK_a_MY_pH46_60.raw 7_DMSO_d_MY_pH72_60.raw 4_DMSO_d_MY_pH46_60.raw 7_DMSO_c_MY_pH72_60.raw 4_DMSO_c_MY_pH46_60.raw 7_DMSO_b_MY_pH72_60.raw 4_DMSO_b_MY_pH46_60.raw 7_DMSO_b_MY_pH72_60.raw 4_DMSO_b_MY_pH46_60.raw 7_DMSO_a_MY_pH72_60.raw 4_DMSO_b_MY_pH46_60.raw	7_Q_b_MY_pH72_60.raw	4_Q_b_MY_pH46_60.raw
7_EK_d_MY_pH72_60.raw 4_EK_d_MY_pH46_60.raw 7_EK_c_MY_pH72_60.raw 4_EK_c_MY_pH46_60.raw 7_EK_b_MY_pH72_60.raw 4_EK_b_MY_pH46_60.raw 7_EK_a_MY_pH72_60.raw 4_EK_a_MY_pH46_60.raw 7_DMSO_d_MY_pH72_60.raw 4_DMSO_d_MY_pH46_60.raw 7_DMSO_c_MY_pH72_60.raw 4_DMSO_c_MY_pH46_60.raw 7_DMSO_b_MY_pH72_60.raw 4_DMSO_b_MY_pH46_60.raw 7_DMSO_b_MY_pH72_60.raw 4_DMSO_b_MY_pH46_60.raw 7_DMSO_a_MY_pH72_60.raw 4_DMSO_b_MY_pH46_60.raw	7_Q_a_MY_pH72_60.raw	4_Q_a_MY_pH46_60.raw
7 EK_c_MY_pH72_60.raw 4 EK_c_MY_pH46_60.raw 7 EK_b_MY_pH72_60.raw 4 EK_b_MY_pH46_60.raw 7 EK_a_MY_pH72_60.raw 4 EK_a_MY_pH46_60.raw 7 DMSO_d_MY_pH72_60.raw 4 DMSO_d_MY_pH46_60.raw 7 DMSO_c_MY_pH72_60.raw 4 DMSO_c_MY_pH46_60.raw 7 DMSO_b_MY_pH72_60.raw 4 DMSO_b_MY_pH46_60.raw 7 DMSO_b_MY_pH72_60.raw 4 DMSO_b_MY_pH46_60.raw 7 DMSO_a_MY_pH72_60.raw 4 DMSO_b_MY_pH46_60.raw	7_EK_d_MY_pH72_60.raw	4_EK_d_MY_pH46_60.raw
7_EK_b_MY_pH72_60.raw 4_EK_b_MY_pH46_60.raw 7_EK_a_MY_pH72_60.raw 4_EK_a_MY_pH46_60.raw 7_DMSO_d_MY_pH72_60.raw 4_DMSO_d_MY_pH46_60.raw 7_DMSO_c_MY_pH72_60.raw 4_DMSO_c_MY_pH46_60.raw 7_DMSO_b_MY_pH72_60.raw 4_DMSO_b_MY_pH46_60.raw 7_DMSO_b_MY_pH72_60.raw 4_DMSO_b_MY_pH46_60.raw 7_DMSO_a_MY_pH72_60.raw 4_DMSO_a_MY_pH46_60.raw	7_EK_c_MY_pH72_60.raw	4_EK_c_MY_pH46_60.raw
7_EK_a_MY_pH72_60.raw 4_EK_a_MY_pH46_60.raw 7_DMSO_d_MY_pH72_60.raw 4_DMSO_d_MY_pH46_60.raw 7_DMSO_c_MY_pH72_60.raw 4_DMSO_c_MY_pH46_60.raw 7_DMSO_b_MY_pH72_60.raw 4_DMSO_b_MY_pH46_60.raw 7_DMSO_a_MY_pH72_60.raw 4_DMSO_a_MY_pH46_60.raw	7_EK_b_MY_pH72_60.raw	4_EK_b_MY_pH46_60.raw
7_DMSO_d_MY_pH72_60.raw 4_DMSO_d_MY_pH46_60.raw 7_DMSO_c_MY_pH72_60.raw 4_DMSO_c_MY_pH46_60.raw 7_DMSO_b_MY_pH72_60.raw 4_DMSO_b_MY_pH46_60.raw 7_DMSO_a_MY_pH72_60.raw 4_DMSO_a_MY_pH46_60.raw	7_EK_a_MY_pH72_60.raw	4_EK_a_MY_pH46_60.raw
7_DMSO_c_MY_pH72_60.raw 4_DMSO_c_MY_pH46_60.raw 7_DMSO_b_MY_pH72_60.raw 4_DMSO_b_MY_pH46_60.raw 7_DMSO_a_MY_pH72_60.raw 4_DMSO_a_MY_pH46_60.raw	7_DMSO_d_MY_pH72_60.raw	4_DMSO_d_MY_pH46_60.raw
7_DMSO_b_MY_pH72_60.raw 4_DMSO_b_MY_pH46_60.raw 7_DMSO_a_MY_pH72_60.raw 4_DMSO_a_MY_pH46_60.raw	7_DMSO_c_MY_pH72_60.raw	4_DMSO_c_MY_pH46_60.raw
7_DMSO_a_MY_pH72_60.raw 4_DMSO_a_MY_pH46_60.raw	7_DMSO_b_MY_pH72_60.raw	4_DMSO_b_MY_pH46_60.raw
	7_DMSO_a_MY_pH72_60.raw	4_DMSO_a_MY_pH46_60.raw

Q-Exactive MS Report: Thermo Scientific SII for Xcalibur Method – Next Pages

```
Thermo Scientific SII for Xcalibur Method
---- Overview -----
Name: New Instrument Method
Comment:
Run time: 100.000 [min]
Instrument: Hook_nano on 2hy18d2
Description:
---- Script --
initial
             Instrument Setup
             PumpModule.LoadingPump.%A.Equate: "%A"
             PumpModule.LoadingPump.%B.Equate: "%B"
             PumpModule.LoadingPump.%C.Equate: "%C"
             PumpModule.LoadingPump.Pressure.LowerLimit: 0 [bar]
             PumpModule.LoadingPump.Pressure.UpperLimit: 600 [bar]
             PumpModule.LoadingPump.MaximumFlowRampUp: 101 [µl/min<sup>2</sup>]
             PumpModule.LoadingPump.MaximumFlowRampDown: 10 [µl/min<sup>2</sup>]
             PumpModule.NC Pump.%A.Equate: "%A"
             PumpModule.NC_Pump.%B.Equate: "%B"
PumpModule.NC_Pump.Pressure.LowerLimit: 0 [psi]
             PumpModule.NC_Pump.Pressure.UpperLimit: 9800 [psi]
             PumpModule.NC_Pump.MaximumFlowRampUp: 0.300 [µ1/min<sup>2</sup>]
PumpModule.NC_Pump.MaximumFlowRampDown: 0.300 [µ1/min<sup>2</sup>]
             ColumnOven.TempCtrl: Off
             Sampler.LowDispersionMode: Off
             Sampler.WashSpeed: 4.000 [µl/s]
             Sampler.WashVolume: 50.000 [µ1]
             Sampler.PunctureDepth: 7.000 [mm]
             Sampler.SampleHeight: 3.000 [mm]
             Sampler.WasteSpeed: 4.000 [µl/s]
             Sampler.DispenseDelay: 2.000 [s]
             Sampler.DispSpeed: 2.000 [µl/s]
             Sampler.DrawSpeed: 0.500 [µ1/s]
             Sampler.DrawDelay: 5.000 [s]
             Sampler.RinseBetweenReinjections: No
             Sampler.InjectMode: UserProg
             Sampler.LoopWashFactor: 2.000
             Sampler.PumpDevice: "NC Pump"
             Sampler.ReagentAVial: R1
             Sampler.ReagentBVial: R2
             Sampler.ReagentCVial: R3
             Sampler.ReagentDVial: R4
             Sampler.ReagentEVial: RA1
             Sampler.ReagentFVial: RA1
             Sampler.ReagentGVial: RA1
             Sampler.ReagentHVial: RA1
             Sampler.TempCtrl: On
             Sampler.Temperature.Nominal: 7.0 [°C]
             Sampler.ReadyTempDelta: None
             Sampler.Temperature.LowerLimit: 4.0 [°C]
```

Tuesday, August 04, 2020 09:58:26

Page 1 of 5

Thermo Scientific SII for Xcalibur Method Sampler.Temperature.UpperLimit: 45.0 [°C] Sampler.UdpSyringeValve Waste Sampler.UdpMixNeedleWash 100 Sampler.UdpSyringeValve Needle Sampler.UdpDraw ReagentAVial, (2*Sampler.NeedleVolume)+Sampler.LoopVolume, GlobalSpeed, 4 [mm] Sampler.UdpMixWait 4 [s] Sampler.UdpInjectValve Load Sampler.UdpDraw SampleVial, Sampler.Volume, 0.2 [µl/s], 3.000 [mm] Sampler.UdpMixWait 4 [s] Sampler.UdpDraw ReagentAVial, (Sampler.LoopVolume-Sampler.Volume) *0.5+Sampler.NeedleVolume, GlobalSpeed, 2 [mm] Sampler.UdpMixWait 4 [s] Sampler.UdpInjectValve Inject Sampler.UdpMixWait Sampler.LoopVolume/PumpModule.NC Pump.Flow.Nominal*1.1*60 Sampler.UdpInjectValve Load Sampler.UdpInjectMarker Sampler.UdpSyringeValve Waste Sampler.UdpMixNeedleWash 100.000 [µ1] [nim] 000.0 Inject Preparation Wait PumpModule.LoadingPump Ready And PumpModule.NC Pump.Ready And ColumnOven.Ready 0.000 [min] Inject Sampler.Inject 0.000 [min] Start Run PumpModule.NC_Pump.NC_Pump_Pressure.AcqOn 0.000 [min] Run PumpModule.LoadingPump.Flow.Nominal: 0.000 [µl/min] PumpModule.LoadingPump.%B.Value: 0.0 [%] PumpModule.LoadingPump.%C.Value: 0.0 [%] PumpModule.LoadingPump.Curve: 5 PumpModule.NC Pump.Flow.Nominal: 0.300 [µ1/min] PumpModule.NC_Pump.%B.Value: 1.0 [%] PumpModule.NC_Pump.Curve: 5 0.100 [min] PumpModule.NC_Pump.Flow.Nominal: 0.300 [µ1/min] PumpModule.NC Pump. %B.Value: 5.0 [%] PumpModule.NC_Pump.Curve: 5 20.000 [min] PumpModule.LoadingPump.Flow.Nominal: 0.000 [µl/min] PumpModule.LoadingPump.%B.Value: 0.0 [%] PumpModule.LoadingPump.%C.Value: 0.0 [%]

Tuesday, August 04, 2020 09:58:26

Page 2 of 5

Thermo Scientific SII for Acalibur Method
PumpModule.LoadingPump.Curve: 5
65.000 [min]
PumpModule.NC_Pump.Flow.Nominal: 0.300 [µ1/min] PumpModule.NC_Pump.%B.Value: 40.0 [%]
PumpModule.NC_Pump.Curve: 5
70.000 [min] PumpModule.NC Pump.Flow.Nominal: 0.300 [ul/min]
PumpModule.NC_Pump.%B.Value: 85.0 [%]
PumpModule.NC_Pump.Curve: 5
PumpModule.NC_Pump.Flow.Nominal: 0.300 [µ1/min]
PumpModule.NC_Pump.%B.Value: 85.0 [%]
80.100 [min]
PumpModule.NC_Pump.Flow.Nominal: 0.400 [µ1/min]
PumpModule.NC Pump.Curve: 5
90.000 [min]
PumpModule.NC_Pump.*Elow.Nominal: 0.400 [µ1/min] PumpModule.NC_Pump.*B.Value: 90.0 [%]
PumpModule.NC_Pump.Curve: 5
90.100 [min] PumpModule.NC Pump.Flow.Nominal: 0.300 [µl/min]
PumpModule.NC_Pump.%B.Value: 1.0 [%]
PumpModule.NC_Pump.Curve: 5 100.000 [min] Stop Run
PumpModule.NC_Pump.NC_Pump_Pressure.AcqOff

Tuesday, August 04, 2020 09:58:26

Method of Q Exactive		
Overall method settings		
Global Settings	off	
Lock mass injection		
Chrom. peak width (FWHM)	15	s
Time	05 00	
Method duration Customized Tolerances (+/-)	95.00	min
Lock Masses		
Inclusion	-	
Exclusion	-	
Neutral Loss Magg Tagg	_	
Dynamic Exclusion	10.0	ppm
Experiment		
Full MS / dd-MS ² (TopN)		
General		
Runtime	0 to 95	min
Polarity	Positive	-V
Default charge state	2	ev
Inclusion	2	
Exclusion		
Tags	-	
Full MS Microscans	1	
Resolution	70,000	
AGC target	3e6	
Maximum IT	100	ms
Number of scan ranges	250 to 1500	m/7
Spectrum data type	Profile	III/ Z
dd-MS ² / dd-SIM		
Microscans	1	
Resolution	17,500	
Maximum TT	50	ms
Loop count	15	
MSX count	1	
TopN	15	
Isolation window	1.5	m/z m/z
Scan range	200 to 2000	m/z
Fixed first mass	150.0	m/z

Tuesday, August 04, 2020 09:58:26

Page 4 of 5

(N)CE / stepped (N)CE Spectrum data type dd Settings Minimum AGC target Intensity threshold Apex trigger Charge exclusion Peptide match Exclude isotopes Dynamic exclusion If idle ..

nce: 28 Centroid

> 3.00e2 6.0e3

unassigned, 1 Preferred on 20.0 s do not pick others

Setup

Tunefiles

General Switch Count 0 Base Tunefile C:\Xcalibur\methods\ZJ nanoTune 20200115.mstune

Contact Closure

General False Start in Closed True 0 Switch Count

Syringe

General Start in OFF True Stop at end of run False Switch Count 0 Pump setup

Pump setupSyringe typeHamiltonFlow rate3.000 μL/minInner diameter2.303 mmVolume250 μL

Divert Valve A

General Used False Start in 1-2 True Switch Count 0

Divert Valve B

General Used False Start in 1-2 True Switch Count 0

Tuesday, August 04, 2020 09:58:26

Page 5 of 5

Summary

1. Notes

2. Result Statistics

Figure 1. False discovery rate (FDR) curve. X axis is the number of peptide-spectrum matches (PSM) being kept. Y axis is the corresponding FDR. 🥥

Figure 2. PSM score distribution. (a) Distribution of PEAKS peptide score; (b) Scatterplot of PEAKS peptide score versus precursor mass error.

Table 4. PTM profile.

Name AMass Position #PSM -10lgP Area AScore

Table 1. Statistics of data.# of MS scans224271# of MS/MS scans332306

Table 2. Result filtration parameters.Peptide -10lgP ≥ 41.5 Peptide Ascore ≥ 0 Protein -10lgP ≥ 89.5 Proteins unique peptides ≥ 0 De novo ALC Score $\geq 50\%$

Table 3. Statistics of filtered result.

1/2

Supplementary Table

Peptide-Spectrum Matches	15249
Peptide sequences	740
Protein groups	199
Proteins	199
Proteins (#Unique Peptides)	151 (>2); 37 (=2); 9 (=1);
FDR (Peptide-Spectrum Matches)	0.2%
FDR (Peptide Sequences)	0.9%
FDR (Protein)	1.0%
De Novo Only Spectra	27127

3. Experiment Control

Figure 4. Precursor mass error of peptide-spectrum matches (PSM) in filtered result. (a) Distribution of precursor mass error in ppm; (b) Scatterplot of precursor m/z versus precursor mass error in ppm. 2

Table 5. Number of identified peptides in each sample by the number of missed cleavages

0	1	2	3	4-
0	0	0	0	5
0	0	0	0	2′
0	0	0	0	34
0	0	0	0	2
0	0	0	0	62
0	0	0	0	49
0	0	0	0	14
0	0	0	0	2
0	0	0	0	5
0	0	0	0	59
	0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{cccc} 0 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

4. Other Information

Table 6. Search parameters.Search Engine Name: PEAKSParent Mass Error Tolerance: 15.0 ppmFragment Mass Error Tolerance: 0.01 DaPrecursor Mass Search Type: monoisotopicEnzyme: NoneMax Missed Cleavages: 100Non-specific Cleavage: bothMax Variable PTM Per Peptide: 3Database: TDP_237library_07202017Taxon: AllSearched Entry: 228FDR Estimation: EnabledDifferent data refine parameters are used for this search:

Table 7. Instrument parameters.

Fractions: MY_20180116_46_0000_1.raw, MY_20180116_46_0000_2.raw , MY_20180116_46_0000_3.raw, MY_20180116_46_0000_4.raw, MY_20 180116_46_0015_1_Reinject.raw, MY_20180116_46_0015_2.raw, MY_20180116_46_0060_1.raw, MY_20180116_46_0060_2.raw, MY_20180116_46_0060_1.raw, MY_20180116_72_0000_3.raw, MY_20180116_72_0000_3.raw, MY_20180116_72_0000_3.raw, MY_20180116_72_0015_1.raw, MY_20180116_72_0015_1.raw, MY_20180116_72_0015_1.raw, MY_20180116_72_0015_2.raw, MY_20180116_72_0015_2.raw, MY_20180116_72_0015_3.raw, MY_20180116_72_0015_1.raw, MY_20180116_72_0015_2.raw, MY_20180116_72_0015_3.raw, MY_20180116_72_0015_2.raw, MY_20180116_72_0000_3.raw, MY_20180116_72_0000_3.raw, MY_20180116_72_0015_3.raw, MY_20180116_72_0000_3.raw, MY_20180116_72_0000_3.raw, MY_20180116_72_0000_4.raw, MY_20180116_72_0000_5.raw, MY_20015.raw, MY_20180116_72_0000_5.raw, MY_20180116_70_000_5.raw, MY_20015.raw, MY_20015.raw, MY_2000_5.raw, MY_20015.raw, MY_20000_5.raw, MY_20000_5.raw, MY_2000_5.raw, MY_20000_5.raw, MY_2000_5.raw, MY_2000_5.raw Summary

1. Notes

2. Result Statistics

Figure 1. False discovery rate (FDR) curve. X axis is the number of peptide-spectrum matches (PSM) being kept. Y axis is the corresponding FDR. 🥥

Figure 2. PSM score distribution. (a) Distribution of PEAKS peptide score; (b) Scatterplot of PEAKS peptide score versus precursor mass error.

Figure 3. De novo result validation. Distribution of residue local confidence: (a) Residues in de novo sequences validated by confident database peptide assignment; (b) Residues in "de novo only" sequences.

Table 4. PTM profile.

Name AMass Position #PSM -10lgP Area AScore

Table 1. Statistics of data.# of MS scans462226# of MS/MS scans995943

 Table 2. Result filtration parameters.

 Peptide -10lgP
 ≥55

 Peptide Ascore
 ≥0

 Protein -10lgP
 ≥20

 Proteins unique peptides
 ≥0

 De novo ALC Score
 ≥50%

Table 3. Statistics of filtered result.

S31

Supplementary Table

Peptide-Spectrum Matches	16641
Peptide sequences	639
Protein groups	435
Proteins	435
Proteins (#Unique Peptides)	109 (>2); 34 (=2); 32 (=1);
FDR (Peptide-Spectrum Matches)	0.1%
FDR (Peptide Sequences)	0.9%
FDR (Protein)	106.2%
De Novo Only Spectra	69052
Proteins Proteins (#Unique Peptides) FDR (Peptide-Spectrum Matches) FDR (Peptide Sequences) FDR (Protein) De Novo Only Spectra	435 109 (>2); 34 (=2); 32 (=1) 0.1% 0.9% 106.2% 69052

3. Experiment Control

Figure 4. Precursor mass error of peptide-spectrum matches (PSM) in filtered result. (a) Distribution of precursor mass error in ppm; (b) Scatterplot of precursor m/z versus precursor mass error in ppm.

Table 5. Number of identified peptides in each sample by the number of missed cleavages

Missed Cleavages	0	1	2	3	4+
4aCA	0	0	0	0	6
4aEK	0	0	0	0	21
4aQ	0	0	0	0	8
4aRK	0	0	0	0	28
4a	0	0	0	0	33
4bCA	0	0	0	0	8
4bEK	0	0	0	0	15
4bQ	0	0	0	0	7
4bRK	0	0	0	0	3
4b	0	0	0	0	16

4. Other Information

Table 6. Search parameters.Search Engine Name: PEAKSParent Mass Error Tolerance: 15.0 ppmFragment Mass Error Tolerance: 0.01 DaPrecursor Mass Search Type: monoisotopicEnzyme: NoneMax Missed Cleavages: 100Non-specific Cleavage: bothMax Variable PTM Per Peptide: 3Database: TDP_237library_07202017Taxon: AllSearched Entry: 228FDR Estimation: EnabledDifferent data refine parameters are used for this search:

Table 7. Instrument parameters.

Fractions: 4aCA_MY_pH46_60.raw, 4aEK_MY_pH46_60.raw, 4aQ_MY_pH4 6_60_200502050824.raw, 4aRK_MY_pH46_60_200501191944.raw, 4a_M Y_pH46_60.raw, 4bCA_MY_pH46_60_200501172201.raw, 4bEK_MY_pH46 _60_200501110132.raw, 4bQ_MY_pH46_60.200502011255.raw, 4bBK_M Y_pH46_60_200501152411.raw, 4b_MY_pH46_60.raw, 4cCA_MY_pH46_6 0.raw, 4cEK_MY_pH46_60.raw, 4dCA_MY_pH46_60.raw, 4cRK_MY_pH46_60.raw, 4cEK_MY_pH46_60.raw, 4dCA_MY_pH46_60.raw, 4dCA_MY_pH46_60.raw, 4dCA_MY_pH46_60.raw, 4dCA_MY_pH46_60.raw, 4dCA_MY_pH46_60.raw, 4dCK_MY_pH46_60.raw, 7aCA_MY_pH46_60.raw, 4dCA_MY_pH46_60.raw, 7aCA_MY_pH72_60_200501211728.raw, 7aEK_MY_pH72_60.raw, 7a_MY_pH72_60_200501231512.raw, 7bCA_MY_pH72_60_200502070608.raw, 7 bEK_MY_pH72_60.raw, 7cCA_MY_pH72_60.raw, 7cEK_MY_pH72_60.raw, 7 bK_MY_pH72_60.raw, 7cRK_MY_pH72_60.raw, 7cC_MY_pH72_60.raw, 7 dCA_MY_pH46_60.raw, 7dEK_MY_pH72_60.raw, 7dQ_MY_pH46_60.raw, 7dRK_MY_pH72_60.raw, 7d_MY_pH72_60.raw, 7dQ_MY_PH72_60.raw, 7dRK_MY_PH72_60.raw, 7d_MY_PH72_60.raw, 7dQ_MY_PH72_60.raw, 7dRK_MY_PH72_60.raw, 7d_MY_PH72_60.raw, 7dQ_MY_PH72_60.raw, 7dRK_MY_PH72_60.raw, 7d_MY_PH72_60.raw, 7dQ_MY_PH72_60.raw, 7dRK_MY_PH72_60.raw, 7d_M