1 Supplementary Figures

2

3 Figure S1. Hemogram analyses comprised of absolute number of white blood cells (a), absolute number 4 and percentage of lymphocytes (b - c), monocytes, (d - e), and granulocytes (f - g) in comparison to total 5 white blood cells. Absolute number of red blood cells (h), hemoglobin content (i), and platelet absolute 6 7 number (j). A representative graph of monocytes, lymphocytes, and granulocytes is shown in k. In a and b, n = 10, 9, and 5 for sham, B16-F10 $Opn4^{WT}$, and B16-F10 $Opn4^{KO}$ groups, respectively. In c, n = 9, 9, and 8 4, respectively. In d, n = 10, 8, and 5, respectively. In e, n = 10, 10, and 5, respectively. In f, n = 8, 9, and 9 4, respectively. In g, n = 9, 9, and 4, respectively. In h - i, n = 10,10, and 5, respectively. In j, n = 9, 9, and 10 5, respectively. In every analyzes, the n number is derived from independent samples. Asterisk represents differences between tumor-bearing and sham (control) animals while hashtag indicates differences between 11 $Opn4^{WT}$ and $Opn4^{KO}$. p values are shown in each condition. 12

13

Figure S2. Representative flow cytometry gates of total (a – b), M1 (c – d, CD80+) and M2 (e – f, 206+)
macrophages, and CD4+ and CD8+ naïve (g – h), central (CD44+ and CD62L+), and effector memory
(CD44+ and CD62L-, i – j) lymphocytes of tumor and spleen samples from *Opn4*^{WT} and *Opn4*^{KO} tumorbearing mice. k) Negative control of CellTrace experiment (Described in Fig. 2). l) Negative control of cell
cycle experiment using BrDU and 7-AAD (Described in Fig. 2). m) Negative control of *in vitro* and n) *in vivo* experiments (Described in Fig. 3 and 5, respectively).

Figure S3. Evaluation of immune system cells in spleen of sham control, Opn4^{KO} and Opn4^{WT} tumor-bearing mice. Frequency of macrophages (a - c), T CD4+ (d - g), and CD8+ (h - k) lymphocytes and their respective subtypes in spleens of Opn4KO and Opn4WT tumor-bearing and sham control mice. Subtypes of each cell population are indicated in the Y axis. In a, n = 8, 13, and 7 for sham, B16-F10 Opn4^{WT}, and B16-F10 Opn4^{KO} groups, respectively. In b, n = 9, 12, and 4, respectively. In c, n = 8, 11, and 6, respectively. In d, n = 10, 12, and 5, respectively. In e, n = 9, 11, and 6, respectively. In f, n = 9, 12, and 4, respectively. In g, n = 10, 12, and 6, respectively. In h, n = 8, 12, and 5, respectively. In i, n = 9, 12, and 5, respectively. In j, n = 10, 11, and 4, respectively. In k, n = 8, 9, and 5, respectively. In every analyzes, the n number is derived from independent samples. Representative gate strategy is shown in Figure S2. Asterisks represent differences between Opn4^{WT} and Opn4^{KO} tumor-bearing mice compared to sham control mice. Hashtag represents differences between Opn4^{WT} tumor-bearing mice and sham control animals. Brackets indicate the differences between *Opn4^{KO}* tumor-bearing mice and the remaining groups.

Figure S4. Gene expression in tumor bulk of $Opn4^{KO}$ and $Opn4^{WT}$ tumors. a – f) *In vivo* expression of cell cycle-related genes of $Opn4^{WT}$ and $Opn4^{KO}$ tumor bulk. In a, n = 7 and 6 for $Opn4^{KO}$ and $Opn4^{WT}$ tumors, respectively; in b, n = 8 and 7, respectively. in c, n = 5 for both groups; in d, n = 7 and 5, respectively. in e, n = 8 and 6, respectively. in f, n = 7 and 5, respectively. In every analyzes, the n number is derived from independent sample. Gene name is shown in the Y-axis. * p < 0.05.

58

61

Figure S5. Bioinformatics analyses of TCGA RNA-seq data from melanoma tumors. a) MITF and OPN4 expression in 103 primary melanomas and 368 metastatic melanomas. Tumors were stratified into high and low *MITF* expression based on the 5th percentil (dashed line). b) Proportion of *MITF* high and low tumors in primary and metastatic disease. c) *OPN4* expression and the inferred G1/S vs. G2/M ratio in low and high MITF tumors. d) Abundance of tumor-infiltrating immune cells estimated by the CIBERSORT algorithm in high and low MITF tumors. e) Correlation analyses between estimated abundances and OPN4 expression.

71 Supplementary Table S1

Drug's Name	Target	Vehicle	Concentration used
BAPTA-AM	Calcium chelator	DMSO	10 µM
Dexamethasone	Specific GR activator	PBS	200 nM
Forskolin	Adenylyl cyclase activator	DMSO	10 µM
KN-93	Calcium/calmodulin- dependent protein kinase activator	DMSO	9 μM
L-Name	Oxide nitric synthase inhibitor	PBS	10 – 20 mM
ODQ -	Guanylyl cyclase inhibitor	DMSO	50 µM
U-73122	Phospholipase C inhibitor	DMSO	10 µM

72 DMSO concentration was never higher than 2% during experiments. Drugs' concentration was based on a
 73 previous study ⁴⁴.

83 Supplementary Table S2

Templates (Access numbers)	Primers and probes (5' – 3')		
Atm	For: AACCATGCTTGCTGTTGTCG		
(NM_007499.3)	Rev: AATCCAGCCAGAAAGCGTCA		
Atr	For: CCTCAAACCGCTTTTTCGCA		
(NM_019864.1)	Rev: ATCCGGCCTTTTGTTGAGACT		
<i>Bmal1</i> (NM_001243048)	For: AAGCTTCTGCACAATCCACAGCAC		
	Rev: TGTCTGGCTCATTGTCTTCGTCCA		
	Probe: 5'-/5HEX/AAAGCTGGCCACCCACGAAGATGGG/BHQ_1/-3'		
Ccnal	For: GAAATTGCAGCTTGTCGGGA		
(NM_007628.3)	Rev: TGCCAGGACTTTGAGTAGCAG		
Ccnf	For: TCCACGATGATGCACCCAAA		
(NM_007634.4)	Rev: TTTCTCGCTTCCGTTTGCTC		
Chekl	For: TGTGCATTTGGATTCCTGTGG		
(NM_007691.5)	Rev: CTATGGCCCGCTTCATGTCTA		
<i>Gzmf</i> NM_010374	For: GCTGGGGGGAGAACATCCATC Rev: TGTCCTGTTTAGCCCATAGGT		
<i>Il-10</i> NM_010548	For: GCTCTTACTGACTGGCATGAG Rev: CGCAGCTCTAGGAGCATGTG		
ΙΙ-1β	For: GCAACTGTTCCTGAACTCAACT		
NM_008361	Rev: ATCTTTTGGGGGTCCGTCAACT		
<i>II-6</i>	For: CCTGAGACTCAAGCAGAAATGG		
NM_010559	Rev: AGAAGGAAGGTCGGCTTCAGT		
Mitf	For: CCCAGGTATGAACACGCACT		
(NM_001113198.1)	Rev: CTGTGGGGAAAATACACGCTG		
<i>Prfl</i> NM_011073	For: AGCACAAGTTCGTGCCAGG Rev: GCGTCTCTCATTAGGGAGTTTTT		
Rad51	For: GCTGTTGCTTATGCACCGAA		
(NM_011234.5)	Rev: AACTCAGTTGCCGTGGTGAA		
Rpl37a	For: GCATGAAAACAGTGGCCGGT		
(NM_009084.4)	Rev: CAGGGTCACACAGTATGTCTCAAAA		
<i>Tgf-β</i> NM_009367	For: CTTCGACGTGACAGACGCT Rev: GCAGGGGCAGTGTAAACTTATT		

84 All primers were used at 300 nM except for the *Bmal1* probe (200 nM)