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Supplementary Note 1 

Here, we establish the correspondence between 1D electromagnetic (EM) wave scattering 

and 2D heat diffusion. 

1. Governing equations 

For 1D wave scattering, the electric field E(x,t) satisfies 

 
2 2

2 2t
E E

x
εµ∂ ∂

=
∂ ∂

 (1) 

where ε is the permittivity, µ is the permeability, x is the spatial coordinate, and t is time. We 

focus on the scalar field E(x,t) which is the magnitude of the electric field in any certain 

direction. 

For 2D heat diffusion, according to Eq. (2) in the main text, the temperature field T(x,θ) 

satisfies 

 
2 2

2 2x
T T

θ
= −

∂ ∂
∂ ∂

 (2) 

where x = lnr. We see that Supplementary Equation (2) can be mapped to Supplementary 

Equation (1) as follows 

 , , 1xr e tθ εµ→ → − →  (3) 

Under the above relations, the temperature field T(x,t) can be mapped to the electric field E(x,t). 

Moreover, for time-harmonic cases, the fields are periodic in time: E(x,t) = Re[E(x)eiωt], where ω 

is frequency. On the other hand, the temperature field is also periodic on the angular coordinate 

θ: T(x,θ) = Re[F(x)eimθ], where m is an integer. It is thus reasonable to regard θ as a “pseudo 

time” in our case, with 

 m ω→  (4) 

2. Forms of fields 
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Next, we consider the 1D wave scattering process. As in Fig. 1a of the main text, a slab with 

permittivity ε and permeability µ is placed in the interval [x1, x2]. The background has 

permittivity ε0 and permeability µ0. The electric field in the slab and on both sides can be written 

as 
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where k0 = (ε0µ0)1/2ω, k = (εµ)1/2ω. A1 and A2 (B1 and B2) are the amplitudes of the incoming 

(outgoing) waves. 

For 2D heat diffusion, following Eq. (3) of the main text, the temperature fields are 
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where k0 = k = −mi, which is consistent with the mappings in Supplementary Equations (3) and 

(4). Therefore, the fields in both cases have the same form 

 )( ()F Ex x→  (7) 

except that x1 and x2 are ordered differently. 

3. Matching conditions 

At the interfaces, the matching conditions for the electric fields are 
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By substituting Supplementary Equation (5), the matching conditions can be summarized by 

the transfer matrix 
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Combining Supplementary Equations (5) and (8) gives the form of ME for the electric fields as 
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where ∆x = x2 − x1. Y0 = (ε0/µ0)1/2 and Y = (ε/µ)1/2 are the admittances of the background and the 

slab, respectively.  

For 2D heat diffusion, the matching condition is 
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The corresponding transfer matrix is 
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where κ0 and κ are the thermal conductivities of the background and the object, respectively. 

Using the definition of wavenumber k in the thermal case and comparing Supplementary 

Equation (12) with Supplementary Equation (10), the temperature field can be mapped to the 

electric field through 

 0 0 ,Y Yκ κ→ →  (13) 

Combining the above discussions, it is thus shown that the 2D heat transfer problem can be 

formally mapped to a 1D EM wave scattering problem, with the temperature field mapped to the 

electric field.  

 

Supplementary Note 2 
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Our method can formally map the steady-state heat diffusion to wave scattering. However, as 

mentioned in the main text, the temperature field does not really propagate in the r-direction, so 

other physical meanings should be given to perfect absorption in heat diffusion. Here, we offer 

two possible interpretations. One is based on the exergy flux, the other on the heat flux 

magnitude. 

First, note that we are considering the temperature difference T − T0, where T0 is the central 

and ambient temperature (In this Note we do not set T0 to zero). This temperature difference is a 

useful source of thermal energy. To quantify it, we use the concept of exergy. It is defined as the 

maximum useful work a system can do by bringing it into thermodynamic equilibrium with the 

environment. In the heat diffusion process, the local exergy density χ gives the useful thermal 

energy stored at the local point. It is calculated as42 

 0 0 0( )u u T s sχ = − − −  (14) 

where u is the internal energy density, s is the entropy density; u0 and s0 are the internal energy 

density and entropy density of the local spot after it has reached thermodynamic equilibrium 

with the environment. Its governing equation is43 
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The second term is −T0 times the local entropy generation rate which is always positive, so it 

contributes to the dissipation of the local exergy. The exergy flow χf is defined through the first 

term as 

 01f
T
T

 = − 
 

qχ  (16) 

Now return to our system at steady state. The temperature distribution outside the object is 

 1 1
1 1 1 1 1 0( , cos( ) cos() )x x x xT A e B e Tx θ θ α θ β− − += + + + +  (17) 
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For generality, we introduce phases α1 and β1 for the two fields. To simplify the calculation, we 

reasonably assume that T − T0 are much smaller than T0 such that 

 0

0
f
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T
−

≈ qχ  (18) 

The exergy flux in the radial direction is thus estimated as 
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The total exergy flux through a circle is thus 
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Clearly, the amplitudes A1 and B2 determine the total exergy flux in the −r and r directions, 

respectively. Similarly, the total exergy flux through a circle in the interior of the object is 
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At the outer boundary of the object, the total exergy flux that enters (leaves) the object is 

proportional to A1
2 (B1

2). At the inner boundary of the object, the total exergy flux that enters 

(leaves) the object is proportional to A2
2 (B2

2). The perfect absorption condition in heat diffusion 

as we defined in the main text (B1 = B2 = 0) thus means that no exergy flux leaves the object. 

Namely, the useful thermal energy is transferred from the heat sources into the object at 

maximum efficiency. Also, more exergy flux enters than that leaves the object when A1
2 + A2

2 > 

B1
2 + B2

2, or when |det S| < 1. 

Another physically relevant quantity is the heat flux magnitude (outside the object) 
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Therefore, the heat flux magnitude is a constant when A1 = 0 or B1 = 0, but oscillates with θ 

when both fields exist. The same conclusion also applies to the interior part of the object. The 

perfect absorption in heat diffusion thus also corresponds to a θ-independent heat flux magnitude. 

Supplementary Note 3 

In the main text, we always assume that the two incident fields are in phase. Here, we discuss the 

influence of a phase difference between them in terms of their θ-dependences. Note that it is 

impossible to define a phase for the radial dependence because the field does not propagate in 

that direction. We consider the CPA condition with 

 1 2 1 2
0 2 2

1 2 1 2

1 1
,

1 1
r r r r
r r r r

κ κ =
 −

= + +  
S  (23) 

The scattering matrix has two eigenvalues s1 = 0 and s2 = 2r1r2/(r1
2 + r2

2). The eigenvector 

corresponding to the zero eigenvalue s1 is (A1,A2)T = (A1,−A1)T. Using them as the amplitudes of 

the input fields, CPA is realized as shown in Supplementary Figure 1a. 
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Supplementary Figure 1. Effects of a phase difference between the input fields. a, Simulated 

temperature distribution with unrotated input-2 field. b, Simulated temperature distribution with 

input-2 field rotated by −α = π. c, Simulated temperature distribution with input-2 field rotated 
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by −α = π/6. d, Experimentally measured temperature distribution. e, The ratio R between 

exergy fluxes flowing out of and into the object.  

 

Now we introduce a phase into A2 such that (A1,A2)T = (A1,−A1eiα)T. This can be easily done 

by rotating the input-2 field by −α. When α = ±π, the input coincides with the eigenvector for s2. 

The outgoing fields have amplitudes 

 1 2 1 2
1 2 1 12 2 2 2

1 2 1 2

( ) ( )c1 2 1 osi ir r r rB B A e A e
r r r r

α βα= = − = −
+ +

 (24) 

where β = Arg(1 − eiα). Therefore, the outgoing fields have maximized amplitudes with α = ±π. 

This is confirmed by Supplementary Figure 1b, where the temperature field is strongly distorted 

from the CPA case. It is similar to the constructive interference of the scattered fields in optical 

CPA, which is also achieved when the input coincides with the other eigenvector.  

As shown in Supplementary Figure 1c with α = −π/6, it is obvious that a small phase 

difference will strongly break the CPA condition and modify the temperature field. The effect is 

also experimentally verified by tuning the direction of the central copper bridge. The measured 

temperature field is shown in Supplementary Figure 1d. To quantify the influence of the phase 

difference, we calculate R = (|B1|2 + |B2|2)/(|A1|2 + |A2|2), which gives the ratio between exergy 

fluxes flowing out of and into the object according to the previous discussion. The result is 

plotted in Supplementary Figure 1e. We can see that more exergy flux flows out of the object as 

α increases. At α = ±π, the input fields meet the other eigenvector of the scattering matrix, with a 

maximized outgoing exergy flux (around 81% of the incoming flux).  

Supplementary Note 4 

As another interesting example, we study the heat transfer in a background (thermal conductivity 

κ0) through an elliptic object (thermal conductivity κ) and find the coherent perfection absorption 
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(CPA) conditions for it. As shown in Supplementary Figure 2, the outer and inner boundaries of 

the object are confocal ellipses with focal length 2c and major axes 2a1 and 2a2, respectively. 

Naturally, the corresponding curvilinear system is the elliptic coordinate system (ξ,η). Its 

relation with the cartesian coordinates (w,h) is 

 
cos

s n
co
inh s

sh
i

w
h c

c ξ η
ξ η=

=
 (25) 

The outer and inner boundaries of the object are then defined by ξ = ξ1 and ξ = ξ2. 

 

Supplementary Figure 2. Steady-state heat diffusion through an elliptic object (light blue). 

The black arrows represent incoming fields with amplitudes A′1 and A2. The grey arrows 

represent outgoing fields with amplitudes B′1 and B2. An elliptic coordinate system (ξ,η) with the 

same focal length 2c as the boundaries of the object is built (green lines). 

 

1. Heat transfer in an elliptic coordinate system 

The steady-state thermal conduction in the system follows the Laplacian equation ∇2T = 0. In the 

elliptic coordinate system (ξ,η) it is written as: 
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As in the main text, we consider “time-harmonic” solutions like T(ξ,η) = Re[F(ξ)eiη]. Following 

Supplementary Equation  (26), F(ξ) must have the form 
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The matching conditions are 
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Again, we found that the problem can be mapped to the 1D wave scattering. This time it is even 

simpler by setting the wavenumber k = −i. Therefore, the transfer matrix can be directly obtained 
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where ∆ξ = ξ2 − ξ1.  

However, before we proceed, we must examine whether the input-1 A1eξ and input-2 

A2e−ξ are physically meaningful. It is easy to see that input-2 is a reasonable choice since any 

other solution will contain nonzero eξ-component, which is a growing temperature difference 

away from the heat source (heat bath) and is unphysical. For input-1, we still consider the usual 

case of fixed boundary conditions on the left and right sides of the background. Therefore, the 

real input temperature field should be T(ξ,η) = A1′w = A1′coshξcosη, such that input-1 should be 

A1′coshξ. As a result, it is more suitable to decompose the field outside the object as 

 1 1 1 1 1
1 1 1 1
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a b

ξ ξξ ξ ξ
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where b1 is half the minor axis of the outer boundary of the object. 

We introduce a transformation to relate it with the expression in Supplementary Equation  

(27) 

 

1 1

1 1

1 11 1

1

1 1

1

2 2
=

2 2

c ce e
a bA A

B Bc ce e
a b

ξ ξ

ξ ξ− −

 
  ′       ′    − 
 

 (31) 

The physically relevant transfer matrix M′ should be  
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From which the scattering matrix S′ is calculated as 

 1 1 21 1

2 2 12 222

11
det

B A M A
B A M AM

′ ′ ′ ′−      ′= =      ′ ′′      
S

M
 (33) 

It is worth noting that for this hybridized scattering matrix, the parity symmetry is broken 

(M′12 ≠ −M′21), naturally because two different decompositions are used. The scattering matrix is 

also asymmetric (S′ ≠ S′T), since det M′ = −c2/2a1b1 ≠ 1. 

2. Thermal CPA for an elliptic object 

The thermal CPA condition is found by solving κ from det S′ = 0, which is explicitly written as 

 1 1cosh 2 cosh 2 1) sinh 2 1 0(cosh 2 sinh sinh 2γ ξ ξ γ ξ ξ∆ − + ∆ + =  (34) 

where γ = ln(κ/κ0). The analytical expressions of the solutions κ±
* are complicated, so it is 

recommended to numerically solve the equation.  

In the following, we consider a concrete case where a square background with thermal 

conductivity κ0 = 90 W m−1 K−1 and side length L = 2a0 = 14 cm is used. For convenience, a 

cartesian coordinate system (w,h) is also set at the center. The focal length of the object is 2c = 5 
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cm. The major axes of its outer and inner boundaries are 2a1 = 8 cm and 2a2 = 6 cm. The input-1 

is generated by applying constant boundary conditions on the left (T1) and right (T2) sides of the 

background with A1′ = 5 K, so T1 = T0 − A1′a0/a1 and T2 = T0 + A1′a0/a1, where T0 = 293.15 K. A 

convenient property of the elliptic coordinate system is that one can generate input-2 at ξ = 0, 

which is the line segment w = [−c, c] on h = 0. For amplitude A2 of input-2, a linear temperature 

T = T0 + A2w(a2 + b2)/c2 must be maintained on the segment, where b2 is half the minor axis of 

the inner boundary of the object. 

For the above settings, the thermal CPA condition for κ > κ0 is solved as κ+
* = 4.26κ0 = 

383.34 W m−1 K−1, with A2 = 1.01A1′ = 5.06 K. Numerical simulation results are plotted in 

Supplementary Figure 2a and e. The CPA condition for κ < κ0 is solved as κ−
* = 0.18κ0 = 16.50 

W m−1 K−1, with A2 = −0.77A1′ = −3.86 K. Numerical simulation results are plotted in 

Supplementary Figure 3b and f. We note that the results lack the simplicity and symmetry of that 

in a polar coordinate system (e.g. κ+
*/κ0 = κ0/κ−

* and A2 = ±A1). Nevertheless, the effects of CPA 

meet perfectly with the theoretical predictions. The temperature profiles (Supplementary Figure 

3a and b) on both sides of the object are identical to the corresponding part of the input-1 (a 

linear profile) and input-2 (Supplementary Figure 3c and d, other parts are made translucent) 

fields. This is further confirmed by the temperature distributions along the cutline h = 0 

(Supplementary Figure 3e,f). 
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Supplementary Figure 3. Thermal coherent perfect absorption (CPA) for an elliptic object. 

The thermal conductivity κ of the object is (a,c,e) larger or (b,d,f) smaller than that of the 
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background κ0. a,b, The temperature distributions on the entire system with isothermal lines 

(white). c,d, The temperature distribution of input-2 on a pure background that is much larger (L 

= 1 m) than the displayed part (L = 14 cm). e,f, Temperature distributions along the line h = 0. 

The regions of the background (beige) and the object (light blue) are shaded. The incident fields 

input-1 (red) and input-2 (blue) are also plotted. 
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