1 Supplementary Information for

2

3 Yin-Feng Kang^{1#}, Cong Sun^{1#}, Jing Sun^{2#}, Chu Xie¹, Zhen Zhuang², Hui-Qin Xu³,
4 Zheng Liu³, Yi-Hao Liu^{4,5}, Sui Peng⁴, Run-Yu Yuan^{6™}, Jin-Cun Zhao^{2,7™}, Mu-Sheng
5 Zeng^{1,8™}

6

¹ State Key Laboratory of Oncology in South China, Collaborative Innovation Center
for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma
Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen
University Cancer Center (SYSUCC), Sun Yat-sen University, Guangzhou, 510060, P.
R. China.
² State Key Laboratory of Respiratory Disease, National Clinical Research Center for

- 13 Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated
- 14 Hospital of Guangzhou Medical University, Guangzhou, 510182, P. R. China.

¹⁵ ³ Cryo-electron Microscopy Center, Southern University of Science and Technology,

16 Shenzhen, 518000, P. R. China.

⁴ Institute of Precision Medicine, Clinical Trials Unit, The First Affiliated Hospital of

- 18 Sun Yat-sen University, Guangzhou, 510080, P. R. China.
- ⁵ Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen
 University, Guangzhou, 510080, P. R. China.
- ⁶ Guangdong Provincial Institution of Public Health, Guangdong Provincial Center
- 22 for Disease Control and Prevention, Guangzhou, 511430, P. R. China.
- ⁷ Guangzhou Laboratory, Bio-island, Guangzhou, 510320, P. R. China.
- ⁸ Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Guangzhou, 510120, P.

25 R. China.

- [#] These authors contributed equally: Yin-Feng Kang, Cong Sun, Jing Sun.
- 27 [®]email: <u>cecilia_yry@hotmail.com; zhaojincun@gird.cn; zengmsh@sysucc.org.cn</u>
- 28
- 29

31 Supplementary Figures

32

33

34 Supplementary Fig. 1. **Binding** curves of SARS-CoV-2 Spike-specific 35 neutralization antibodies against HexaPro-based nanoparticle immunogens measured by ELISA. The data are presented as means \pm SD in duplicate from three 36 independent experiments SARS-CoV spike-specific CR3022 antibody and EBV 37 38 gH/gL-specific AMMO1 antibody were used as controls. Source data are provided as a Source Data file. 39

42 Supplementary Fig. 2. Thermostability analysis of HexaPro-based immunogens.

a. Thermostability parameter table of SARS-CoV-2 HexaPro or Hexapro-based
nanoparticles determined by DSF from three replicate experiments. Tm: melting
temperature; Tagg 266: aggregation temperature identified by the static light
scattering at 266nm.

b. Barycentric mean (BCM) of the intrinsic protein fluorescence from 300-430nm and
static light scattering intensity at 266nm of the HexaPro-based immunogens. The
curves presented the lined mean data of each temperature point from three replicate
experiments. Source data are provided as a Source Data file.

Supplementary Fig. 3. Cross-neutralization of bat and human coronaviruses by 53 sera elicited by HexaPro-based nanoparticle immunogens. Sera were collected 54 from two weeks after the second booster dose (n=4 cynomolgus macaques in each 55 group) and used to measure the cross-neutralization antibody titers using the 56 pseudoviruses assay. The data were expressed as means ±SD. Comparison between 57 the two groups were performed using a two-tailed Mann-Whitney U test. Mosaic NP 58 vs WT NP in SARS-CoV pseudovirus neutralization titers *p = 0.0286, Mosaic NP vs 59 WT NP in HCoV-NL63 pseudovirus neutralization titers *p = 0.0286. *p < 0.05; ns, 60 no significant. Source data are provided as a Source Data file. 61

Supplementary Fig. 4. Expression of immune-related cytokines and chemokines 65 and viral burden in infected lung tissues at 2 days post B.1.351 variant strain 66 infection. a and b. The expression levels of viral burden (a) and cytokines and 67 chemokines (b) in the lungs at 2 days post infection was measured by qRT-PCR. The 68 69 data were expressed as means \pm SD. Comparisons between the two groups were performed using a Kruskal-Wallis ANOVA with Dunn's correction. *p < 0.05, **p < 0.0570 71 0.01; ns, no significant. (a) Mosaic NP vs PBS in ORF1ab and N transcript copies, **p = 0.0082. (b) WT NP and Cocktail NP vs PBS in CCL2 fold change, *p = 0.0175, 72 *p = 0.0210, respectively. Cocktail NP and Mosaic NP vs PBS in *IL6* fold change, *p 73 = 0.0250, **p = 0.0055, respectively. WT NP and Cocktail NP vs PBS in *IFIT1* fold 74 75 change, *p = 0.0354, *p = 0.0298, respectively. WT NP and Mosaic NP vs PBS in *MX2* fold change, *p = 0.0175, *p = 0.0145, respectively. WT NP and Cocktail NP vs 76 PBS in CXCL10 fold change, *p = 0.0250. WT HexaPro and WT NP vs PBS in IL10 77 fold change, *p = 0.0298, *p = 0.0419, respectively. Cocktail NP and Mosaic NP vs 78 PBS in *IFIT3* fold change, *p = 0.0419, **p = 0.0067, respectively. Mosaic NP vs 79 PBS in *ISG15* fold change, **p = 0.0082. Source data are provided as a Source Data 80

81 file.

Supplementary Fig. 5. Protective efficacy of HexaPro-bearing immunogens in mice following challenge with authentic ancestral SARS-CoV-2 virus *in vivo*. a-c, six-week-old male BALB/c mice were subcutaneously immunized with an equivalent amounts of HexaPro-based immunogens (equal to 5 μ g HexaPro) at weeks 0 and 3. At weeks after the second vaccination, the mice were transduced intranasally with 2.5×10⁸ FFU of Ad5-hACE2, and after 5 days of transduction, the mice were intranasally inoculated with 2×10⁶ PFU/ml of authentic ancestral SARS-CoV-2 virus.

93 Lung tissues were collected for virus titer quantification and94 clinicopathological analysis.

a. Body weight change of mice (n=3 in PBS-treated and WT NP-vaccinated mice, n=4
mice in WT HexaPro, Cocktail NP and Mosaic NP-vaccinated group) after infection
with ancestral SARS-CoV-2. The body weight of each mouse was recorded daily for 8
days.

- b. Virus titers of lung tissues from mice challenged with ancestral SARS-CoV-2 (n= 4
 mice in each group) at 2 days post challenge. LOD, limit of detection. Statistical
 significance was determined by two-tailed unpaired t test. WT HexaPro, WT NP,
 Cocktail NP and Mosaic NP vs PBS, ***p = 0.0001.
- 103 c. Immunohistological analysis of lung tissues from mice challenged with ancestral 104 SARS-CoV-2 at 4 days post challenge (n=2 mice in each experimental group). 105 Hematoxylin and eosin staining (HE, left) and immunohistochemistry (IHC, right) 106 microscopic images are shown in the figure at magnification. Scale bar for H&E, 250 107 μ m (left); 50 μ m (middle); 25 μ m (right), Scale bar for IHC, 50 μ m. In a and b, the 108 data were expressed and plotted as means ± SD. Source data are provided as a Source 109 Data file.

- 111
- 112

Supplementary Fig. 6. Expression of immune-related cytokines and chemokines 113 and viral burden in infected lung tissues at 2 days post infection with the 114 ancestral SARS-CoV-2 strain. a and b. The expression levels of viral burden (a) and 115 cytokines and chemokines (b) in lungs at 2 days post infection were measured by 116 117 qRT-PCR assay. The data were expressed as means \pm SD. Comparison between the two groups was performed using a Kruskal-Wallis ANOVA with Dunn's correction. 118 *p < 0.05; **p < 0.01; ns, no significant. (a) Cocktail NP and Mosaic NP vs PBS in 119 *ORF1ab* transcript copies, *p = 0.0419 and *p = 0.0175, respectively, Mosaic NP vs 120 PBS in N transcript copies, *p = 0.0120. (b) Cocktail NP vs PBS in *IL6* fold change, 121 *p = 0.0298. WT NP vs PBS in *IFIT1* fold change, *p = 0.0354. Cocktail NP vs PBS 122 in MX2 fold change, *p = 0.0495. WT NP vs PBS in CXCL10 fold change, **p = 123 0.0098. WT HexaPro vs PBS in *IL10* fold change, **p = 0.0210. WT NP and Cocktail 124 NP vs PBS in *IFIT3* fold change, *p = 0.0250, *p = 0.0145, respectively. WT NP and 125 Cocktail NP vs PBS in *ISG15* fold change, *p = 0.0495. Source data are provided as a 126 127 Source Data file.

129 Supplementary Tables

- 130 Supplementary Table 1: Kinetic analysis of SARS-CoV-2 mAbs and ACE2
- 131 receptor to HexaPro and HexaPro-based nanoparticle immunogens of
- 132 SARS-CoV-2 prototype and variants.

						Antibody						Receptor	
			REGN10933			P2B-2F6			4A8			ACE2	
		K _D	K _{on}	${\sf K}_{\rm off}$	K _D	K _{on}	${\sf K}_{\rm off}$	K _D	K _{on}	K _{off}	K _p	K _{on}	$K_{\rm off}$
HexaPro	Wild	8.691E-11	2.472E05	2.149E-05	3.503E-11	3.419E05	1.198E-05	3.641E-11	3.608E05	1.314E-05	1.104E-08	9.378E04	1.035E-03
	type												
	Alpha	<1.0E-12	1.792E05	1.220E-07	<1.0E-12	2.219E05	1.676E-07	3.336E-09	2.339E05	7.802E-04	3.307E-09	1.951E05	6.450E-04
	Beta	6.492E-09	1.523E05	9.890E-04	5.715E-12	4.245E04	2.426E-07	1.583E-09	8.940E04	1.416E-04	4.607E-12	3.306E04	1.523E-07
	Gamma	4.737E-09	2.754E05	1.304E-03	2.760E-09	1.199E05	3.309E-04	<1.0E-12	2.972E05	2.041E-07	2.143E-09	1.178E05	2.524E-04
		K _D	K _{on}	K _{off}	K _D	K _{on}	K _{off}	K _D	K _{on}	K _{off}	K _o	K _{on}	K _{off}
HexaPro-based	Wild	1.231E-12	1.631E05	2.007E-07	<1.0E-12	1.958E05	1.610E-07	<1.0E-12	2.008E05	<1.0E-07	4.498E-12	3.076E04	1.384E-07
nanoparticle	type												
	Alpha	1.106E-12	1.594E05	1.762E-07	1.293E-12	1.878E05	2.429E-07	<1.0E-12	1.596E05	1.528E-07	7.592E-12	3.198E04	2.428E-07
	Beta	4.143E-12	3.399E04	1.408E-07	2.921E-12	3.760E04	1.098E-07	1.276E-12	4.892E04	<1.0E-07	3.181E-12	6.566E04	2.089E-07
	Gamma	<1.0E-12	1.660E05	<1.0E-07	1.493E-12	1.627E05	2.429E-07	<1.0E-12	1.855E05	1.318E-07	1.707E-09	1.012E05	1.728E-04
	Mosaic	1.187E-12	1.750E05	2.077E-07	1.351E-12	1.841E05	2.488E-07	<1.0E-12	1.578E05	<1.0E-07	3.529E-12	5.341E04	1.885E-07

133

134 For antibody or receptor binding, SARS-CoV-2 RBD-directed mAbs (REGN10933 and P2B-2F6),

NTD-directed mAb (4A8) and ACE2 receptor was immobilized onto the biosensors, and then
twofold diluted HexaPro or HexaPro-based nanoparticle immunogens injected into the wells.
Binding kinetics were analyzed with a 1:1 model in Octet Analysis Studio. Affinity constant
(K_D), kinetic constants of associations (K_{on}) and dissociations (K_{off}) were summarized in this table.
K_D is calculated from K_{off}/K_{on}.

140

141

Gene	Primer	Sequence
CCL2	Forward primer	5'-TTGACCCGTAAATCTGAAGCTAAT-3'
	Reverse primer	5'-TCACAGTCCGAGTCACACTAGTTCAC-3'
IL6	Forward primer	5'-CACTTCACAAGTCGGAGGCT-3'
	Reverse primer	5'-CTGCAAGTGCATCATCGTTGT-3'
IFIT1	Forward primer	5'-CAAGGCAGGTTTCTGAGGAG-3'
	Reverse primer	5'-GACCTGGTCACCATCAGCAT-3'
MX2	Forward primer	5'-ACCAGAGTGCAAGTGAGGAGCT-3'
	Reverse primer	5'-GTACTAGGGCAGTGATGTCCTG-3'
CXCL10	Forward primer	5'-CCTGCCCACGTGTTGAGAT-3'
	Reverse primer	5'-TGATGGTCTTAGATTCCGGATTC-3'
IL10	Forward primer	5'-CCCTGGGTGAGAAGCTGAAG-3'
	Reverse primer	5'-CACTGCCTTGCTCTTATTTTCACA-3'
IFIT3	Forward primer	5'-TTCCCAGCAGCACAGAAAC-3'
	Reverse primer	5'-AAATTCCAGGTGAAATGGCA-3'
ISG15	Forward primer	5'-TCCATGACGGTGTCAGAACT-3'
	Reverse primer	5'-GACCCAGACTGGAAAGGGTA-3'

143 Supplementary Table 2: Quantitative RT-PCR primer used in this study.